NAME

Module 8 Writing Linear Equations of Two Variables
 Lesson 3 Writing Equations of Lines, Given a Point and the Slope or Two Points

Lesson Objectives

- Write the equation of a line in slope-intercept form when given the slope of the line and a point on the line.
- Write the equation of a line in slope-intercept form when given two points on the line.

For a nonvertical line which has slope m and passes through the point
$\left(x_{1}, y_{1}\right)$, the point-slope form for a linear equation is $\underline{y-y_{1}=m\left(x-x_{1}\right)}$.
(1) Find the equation in slope-intercept form of the line that contains the point (6, 4)
and has a slope of $\frac{2}{3}$.
$y=\frac{2}{3} x$
(2) Find the equation in slope-intercept form of the line that contains the point $(8,9)$ and has a slope of 0 .
$y=9$

Any line with a slope of zero is a horizontal line.
The equation of any horizontal line is of the general form
$y=b$
Any line with an undefined slope is a vertical line.

The equation of any vertical line is of the general form
$x=a$
The slopes of parallel lines are the same
The slopes of perpendicular lines are negative reciprocals

Find the equation in slope-intercept form of the line through the point $(0,0)$ that is parallel to the graph of $y=\frac{2}{3} x+7$.

$$
y=\frac{2}{3} x
$$

Find the equation in slope-intercept form of the line through the point $(-2,3)$ that is perpendicular to the graph of $y=-5 x-2$.
$y=\frac{1}{5} x+3 \frac{2}{5}$

To find the equation of a line given two points on the line, find the
slope and then use the point-slope form of a linear equation. Choose either point to use in the point-slope form.
(5) Find the equation in slope-intercept form of the line through the points
$(5,1)$ and $(9,5)$.
$y=x-4$
Find the equation of the line through the point $(2,0)$ that is parallel to the line through the points $(4,-2)$ and $(-1,1)$. $y=-\frac{3}{5} x+\frac{6}{5}$

