NAME

Module 7 Solving Linear Equations and

Inequalities of Two Variables

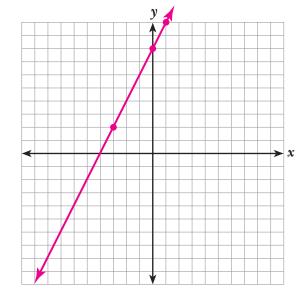
Lesson 2 Graphing Linear Equations of

Two Variables

Lesson Objectives

- Graph linear equations from a data table.
- Graph linear equations using the intercept method.
- Graph linear equations using the slope-intercept method.

It is important to remember that any point on the graph of an equation is


a solution to the equation

Graph the equation using a table.

$$4x - 2y = -16$$

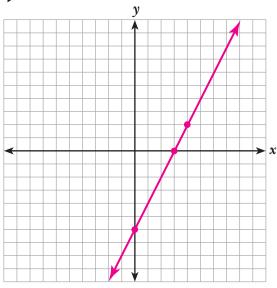
Х	у
-3	2
0	8
1	10

The $\underline{x\text{-intercept}}$ is the x-coordinate of the point at which the

graph crosses the x-axis.

The $\underline{y\text{-intercept}}$ is the y-coordinate of the point at which the

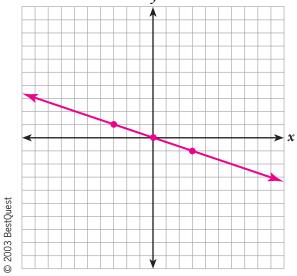
graph crosses the *y*-axis.


To find the *x*-intercept of any equation, set *y* equal to zero and

solve for ______x___.

To find the *y*-intercept of any equation, set *x* equal to zero and

Graph 2x = y + 6 using the intercept method.


rise The slope of a line is the ratio _

slope =
$$\frac{\text{rise}}{\text{run}}$$

Slope-intercept form of a linear equation: y = mx + b

b = y-intercept

Graph the equation $y = \frac{-x}{3}$ using the slope-intercept method.

14 Module 7 Lesson 2 **Guided Notes**