NAME

Module 5 Solving Linear Inequalities of One Variable

Lesson 5 Solving Conjunction Inequalities

Lesson Objectives

- Solve and graph the solution sets to conjunctions.
- Use the notation $a<x<b$ to show that x lies between a and b, $a<b$.

A compound inequality is two inequalities joined by the words
and
or or
A conjunction consists of two statements joined by the word "and."

A conjunction is only true when both statements are true
To solve a conjunction inequality \qquad , find the solutions that
make both inequalities true.
To solve a conjunction inequality, find the intersection of the
solution sets of the individual inequalities.
A conjunction has no solution if the graphs of the two inequalities have no points in common or do not intersect.

The notation $0<x \leq 4$ shows that x lies between zero and four, including four but not including zero
(1) Solve and graph. $x \geq 6$ and $x \leq 2$. The conjunction has no solution.

(2) Solve and graph. $x<4$ and $x>1$ 1 $<x<4$

(3) Solve and graph. $x \leq-2$ and $x<7 \quad x \leq-2$

To solve the conjunction inequality $-2<x+6<10$, isolate the variable between the inequality signs

The conjunction $10>5>1$ can be written as $1<5<10$ by
reading from right to left.
(4) Solve and graph. $2 x-4 \geq 4$ and $-3 x>18$ Solution set is the empty set.

(5) Solve and graph. $0 \leq x+2 \leq 8 \underline{-2 \leq x \leq 6}$

