gui

ded

notes

NAME

Module 2	Writing and Simplifying Algebraic
	Expressions
Lesson 5	Evaluating Expressions

Lesson Objectives

• Evaluate algebraic expressions for given numerical values.

• Use the order of operations.

An algebraic expression	is a combination of nu	mbers, one or
more variables, and operations.		
Total bases are equal to $1s + 2d + 3d$	t + 4h	
1s is the number of bas	es for <i>s</i> singles, 2d	is the
number of bases for <i>d</i> doubles, <u>3t</u>	is the numbe	er of bases for
t triples, and <u>4h</u> is the n	umber of bases for <i>h</i> ho	ome runs.
Replace each variable in the expressio	n for twenty-four single	·S,
eight doubles, no triples, and twelve h	ome runs.	
$1(\underline{24}) + 2(\underline{8}) + 3(\underline{0})$) + 4(<mark>12</mark>)
To evaluate an expression:		
1. Replace each variable	_ in the expression wit	h its value.
2. Simplify to find the value of the	numerical expression	·
Evaluate $(-2)^n$ for $n = 3$. $(-2)^3$	= -8	
Evaluate $(-2)^n$ for $n = 4$. $(-2)^4$	= 16	
The order of operations can be remem	bered by the saying,	
Please Excuse My Dear Aunt Sally		
Evaluate expressions in parentheses	first, followe	d by
exponents	ly and divide	in
order from left to right. Then, add and	l subtract	in order
from left to right.		
Module 2 Lesson 5	85	

monotype composition

© 2003 BestQuest

Guided Notes

DIGITAL

Evaluate $\sqrt{a^2 + b^2}$ for $a = 3$ and $b = 4$. $\sqrt{3^2 + 4^2} = \sqrt{9 + 16} =$
$\sqrt{25}$ = 5.
Evaluate $\sqrt[3]{x}$ for $x = -8$ 2
2 Evaluate $ 3 - x $ for $x = -8$. 11
The expression $\frac{P\left(1+\frac{r}{n}\right)^{nt}}{r}$, is used to find how much
compound interest a savings account would earn.
Perils of the mariely lastic the annualized with its and as D = 10,000 m = 0.00

Replace the variables in the expression with its value. P = 10,000, r = 0.06, n = 12, and t = 5. $\frac{10,000(1 + \frac{0.06}{12})^{12 \cdot 5}}{12 \cdot 5} = 13,488.50153, \text{ or } \$13,488.50.$

Module 2 Lesson 5

Guided Notes

monotype composition____