NAME

Module 2 Writing and Simplifying Algebraic Expressions
 Lesson 5 Evaluating Expressions

Lesson Objectives

- Evaluate algebraic expressions for given numerical values.
- Use the order of operations.

An algebraic expression is a combination of numbers, one or more variables, and operations.

Total bases are equal to $1 s+2 d+3 t+4 h$ \qquad .
$1 s$
is the number of bases for s singles, $\underline{2 d}$ is the number of bases for d doubles, $3 t$ is the number of bases for t triples, and 4h \qquad is the number of bases for h home runs.

Replace each variable in the expression for twenty-four singles,
eight doubles, no triples, and twelve home runs.
1 (24 \qquad $)+3(0$ \qquad $)+4(\underline{12})$

To evaluate an expression:

1. Replace each variable in the expression with its value.
2. Simplify to find the value of the numerical expression _.

Evaluate $(-2)^{n}$ for $n=3 .(-2)^{3}=-8$
Evaluate $(-2)^{n}$ for $n=4 .(-2)^{4}=16$
The order of operations can be remembered by the saying, \qquad
Please Excuse My Dear Aunt Sally
Evaluate expressions in parentheses first, followed by
exponents . Next, multiply and divide in
order from left to right. Then, add and subtract in order from left to right.

Evaluate $\sqrt{a^{2}+b^{2}}$ for $a=3$ and $b=4$. $\sqrt{3^{2}+4^{2}}=\sqrt{9+16}=$
$\sqrt{25}$

$$
=5
$$

(1) Evaluate $\sqrt[3]{x}$ for $x=-8 \cdot \underline{-2}$
(2) Evaluate $|3-x|$ for $x=-8$. 11

The expression $P\left(1+\frac{r}{n}\right)^{n t}$, is used to find how much compound interest a savings account would earn.

Replace the variables in the expression with its value. $P=10,000, r=0.06$, $n=12$, and $t=5 . \underline{10,000\left(1+\frac{0.06}{12}\right)^{12 \cdot 5}}=13,488.50153$, or $\$ 13,488.50$.

