NAME

Module 2 Writing and Simplifying Algebraic Expressions
 Lesson 3 Identifying Algebraic Properties

guided notes

Lesson Objectives

- Recognize and use the Commutative and Associative Properties of Addition and Multiplication.
- Recognize the identity elements and inverses for addition and multiplication and use their respective properties.
- Recognize and use the Distributive Property of Multiplication over Addition.

The Commutative Property of Addition states that when you add two numbers, the order in which you add them does not matter, or for all real numbers a and $b, a+b=b+a$.

The Associative Property of Addition states that when you are adding, the way that you group the numbers does not change the sum, or for all real numbers a, b, and $c,(a+b)+c=a+(b+c)$.

The Commutative Property of Multiplication states that order in multiplication does not matter, or for all real numbers a and $b, \underline{a b}=\mathbf{b a}$

The Associative Property of Multiplication states that when you multiply,
the way you regroup the factors does not matter, or for all real numbers
a, b, and $c .(\mathbf{a} \cdot \mathbf{b}) \mathbf{c}=\mathbf{a}(\mathbf{b} \cdot \mathbf{c})$
(1) $(4.3+2)+8=4.3+(2+8)$ Associative Property of Addition
(2) $6(5 \cdot 3)=6(3 \cdot 5) \quad$ Commutative Property of Multiplication

Subtraction and Division are not commutative.

The Identity Property of Addition says that when you add
zero to a number the sum is that number, or for all real numbers a,
$a+0=0+a=a$. Zero is the identity element for addition.
multiply by zero, the product is zero, or for any real number a,
$a \cdot 0=0 \cdot a=0$.
One is the identity element for multiplication. The Identity

Property of Multiplication states that for any real number a,
$a \cdot 1=1 \cdot a=a$ _.
Another name for reciprocal is \qquad . Examples of multiplicative inverses are $\frac{1}{4}$ and $\underline{4}$
The Multiplicative Inverse Property states that the
multiplicative inverse, or reciprocal, of any real number a, where $a \neq 0$,
is $\frac{1}{a} \cdot a \cdot \frac{1}{a}=1$.
When you add opposites, or additive inverses , the sum is zero.
The additive inverse, or opposite of any real number a is $-a$ such that
$a+(-a)=(-a)+a=0$.
(3) $7+0=7 \quad$ Identity Property of Addition
(4) Write an equation that illustrates the Zero Property of Multiplication.

Possible answers: $(10)(0)=0,(4.75)(0)=0,\left|\frac{1}{2}\right|(0)=0$.

The Distributive Property of Multiplication over

Addition tells us that $50(84+10)=50(84)+50(10)$, or for all real numbers
a, b, and $c, a(b+c)=a b+a c$
(5) $12(5+9)=12(5)+12(9)$

