
NAME

Module 17 Simplifying Radical Expressions

Lesson 1 Simplifying Radicals

Lesson Objectives

- Simplify square root expressions.
- Simplify cube root expressions.

a is a square root of b if	$a^2 = b$
1	

$$\sqrt{\ }$$
 means the **nonnegative (principal)** square root.

Product Property for Square Roots:

For nonnegative numbers a and b, $\sqrt{a \cdot b} = \sqrt{a}\sqrt{b}$

For a square root expression to be simplified, the radicand

must contain no perfect square factors other than

one

The square root of a <u>negative</u> number is not a real number.

1	Simplify: $\sqrt{63}$	$3\sqrt{7}$
	, ,	

Simplify:
$$\sqrt{80}$$
 $4\sqrt{5}$

Simplify:
$$\sqrt{-8}$$
 not a real number

a is a cube root of b if $a^3 = b$.

For $\sqrt[n]{a}$, n is the **index** and a is the **radicand**

The cube root of a number has the same sign as that number

Product Property for Cube Roots:

For any numbers a and b, $\sqrt[3]{a \cdot b} = \sqrt[3]{a}\sqrt[3]{b}$

For a cube root expression to be simplified, the radicand

must contain no perfect **cube** factors other than

one

Simplify: $\sqrt[3]{128} \ \underline{4\sqrt[3]{2}}$ Simplify: $\sqrt[3]{-500} \ \underline{-5\sqrt[3]{4}}$

$$\sqrt{\chi^2} = |\mathbf{x}|$$

$$\sqrt[3]{\chi^3} = \mathbf{X}$$

86 Module 17 Lesson 1 **Guided Notes**