NAME

Module 16 Solving Rational Equations
Lesson $3 \quad \begin{array}{ll}\text { Solving Problems Using Inverse } \\ & \text { Variation }\end{array}$

Lesson Objectives

- Determine whether a function is an inverse variation, identify the constant of variation, and write the equation.
- Solve problems using inverse variation.

An inverse variation is a function in which the product $x y$ is a

nonzero constant

The nonzero constant is called the constant of variation , which
we represent with the variable k.
For an inverse variation function $x y=k$, we say y varies inversely
as x.
(1) Does y vary inversely as x ? Explain.

x	y
4	9
-2	-18
72	0.5

Yes. The product of x and y in each row is 36 .
(2) Write an equation for the inverse variation.

x	y
4	9
-2	-18
72	0.5

$x y=36$
(3.) Is this an inverse variation? Explain.

x	y
1	0
-2	0
0	2

No. The product of x and y cannot be zero for an inverse variation function.
(4)

The frequency of the vibrations of a guitar string varies inversely as the string's length. A 20 -inch vibrates at a frequency of 288 cycles per second. What is the frequency of 24 -inch guitar string?
$\underline{240 ~ H z}$
(5) Lizzie has enough money to buy six books priced at $\$ 3.25$ each. How many books priced at $\$ 1.50$ can she buy with the same amount of money?

13 books

