NAME

Module 16Solving Rational EquationsLesson 3Solving Problems Using Inverse
Variation

Lesson Objectives

- Determine whether a function is an inverse variation, identify the constant of variation, and write the equation.
- Solve problems using inverse variation.

An inverse variation is a function in which the product *xy* is a

nonzero constant

The nonzero constant is called the **constant of variation** , which

we represent with the variable k.

For an inverse variation function xy = k, we say y **varies inversely**

as *x*.

Does y vary inversely as x? Explain.

Х	у
4	9
-2	-18
72	0.5

Yes. The product of x and y in each row is 36.

Write an equation for the inverse variation.

x	у
4	9
-2	-18
72	0.5

xy = 36

Module 16 Lesson 3

Guided Notes

Is this an inverse variation? Explain.

х	у
1	0
-2	0
0	2

No. The product of x and y cannot be zero for an inverse variation function.

The frequency of the vibrations of a guitar string varies inversely as the string's (4) length. A 20-inch vibrates at a frequency of 288 cycles per second. What is the frequency of 24-inch guitar string?

240 Hz

(5) Lizzie has enough money to buy six books priced at \$3.25 each. How many

books priced at \$1.50 can she buy with the same amount of money?

13 books

© 2003 BestQuest

monotype composition 10 - 46

Module 16 Lesson 3