Module 12 Simplifying Algebraic Expressions by Factoring Polynomials
Lesson 3 Factoring The Difference of Two Squares

Lesson Objectives

- Factor the difference of two squares.
- Recognize first 15 perfect squares
- Recognize the sum of two squares is not factorable.

The rule for factoring the difference of two squares, $a^{2}-b^{2}$ is for any expressions a and $b, a^{2}-\mathbf{b}^{2}=(\mathbf{a}+\boldsymbol{b})(\mathbf{a}-\mathbf{b})$

Square the following numbers:

$1^{2}=\underline{1}$	$6^{2}=36$	$11^{2}=\underline{121}$
$2^{2}=4$	$7^{2}=\underline{49}$	$12^{2}=144$
$3^{2}=9$	$8^{2}=64$	$13^{2}=169$
$4^{2}=16$	$9^{2}=\underline{81}$	$14^{2}=196$
$5^{2}=\underline{25}$	$10^{2}=100$	$15^{2}=\underline{225}$

$$
1^{2}=1
$$

$$
2^{2}=\underline{4}
$$

$$
3^{2}=9
$$

$$
4^{2}=16
$$

$$
5^{2}=\underline{25}
$$

$$
7^{2}=\underline{49}
$$

$$
12^{2}=144
$$

$$
8^{2}=64
$$

$$
13^{2}=169
$$

$$
9^{2}=\underline{81}
$$

$$
14^{2}=196
$$

$$
10^{2}=100
$$

$$
15^{2}=225
$$

For any expressions a and $b, a^{2}+b^{2}$
cannot be factored unless a GCF can be removed
(1) Factor, if possible: $b^{2}-100=$

$$
(b+10)(b-10)
$$

(2) Factor, if possible: $1-z^{2}=$
$(1+z)(1-z)$
(3.) Factor, if possible: $100 h^{2}-49=$
$(10 h+7)(10 h-7)$

