NAME

Module 12	Simplifying Algebraic Expressions	
	by Factoring Polynomials	
Lesson 3	Factoring The Difference of Two	
	Squares	

Lesson Objectives

- Factor the difference of two squares.
- Recognize first 15 perfect squares
- Recognize the sum of two squares is not factorable.

The rule for factoring the difference of two squares, $a^2 - b^2$ is for any

_____.

expressions a and b, $\frac{a^2 - b^2}{a^2 - b^2} = (a + b)(a - b)$

Square the following numbers:

$1^2 = $ <u>1</u>	6 ² = <u>36</u>	$11^2 = $ 121
2 ² = <u>4</u>	7 ² = 49	12 ² = 144
3 ² = 9	8 ² = 64	13 ² = 169
4 ² = 16	9 ² = 81	14 ² = 196
5 ² = 25	$10^2 = 100$	$15^2 = 225$

For any expressions *a* and *b*, $a^2 + b^2$

cannot be factored unless a GCF can be removed

Factor, if possible: $b^2 - 100 =$ (b + 10)(b - 10)

2 Factor, if possible: $1 - z^2 =$

(1 + z)(1 - z)

3 Factor, if possible: $100h^2 - 49 =$

(10h + 7)(10h - 7)

© 2003 BestQuest

