NAME

Module 1 Getting Ready for Algebra

Lesson 1 Defining Sets and Real Numbers

guided motes

Lesson Objectives

- Use appropriate set notation.
- Use Venn diagrams to show set relationships.
- Describe sets of numbers.
- Classify numbers into sets.
- Graph numbers on a number line.

A set is a collection of objects. The symbol \in means "is an element The symbol \subset means "is a subset Name an element of set X. possible answer $2 \in X$ Name a subset of set Y. possible answer $\{3, 5, 7\} \subset Y$ Sets that have no elements in common are called **disjoint** A Venn diagram uses rectangles $_{-}$ and $_{-}$ the relationship of sets. Are sets A and X disjoint? No, because 2 and 4 are in both sets. The intersection _ of two or more sets is the set of elements those sets have in common. This is shown in a Venn diagram when circles overlap The symbol \cap is used to show an intersection. The union _ of two or more sets is the set of all the elements contained in those sets. The symbol \cup is used to show a union. $N = \{1, 2, 3, 4, ...\}$ is a listing of the **natural** _ numbers.

Module 1 Lesson 1

1

Guided Notes

Another name for natural numbers is **counting** numbers.

_____ numbers are the elements of the set of natural numbers and zero.

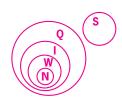
The set of whole _____ numbers is represented by the letter W. The set of integers includes all the whole numbers and their opposites. The letter $\frac{Z}{Z}$ is often used to represent the set of integers.

4 Write an example of how negative integers are used in the real world?

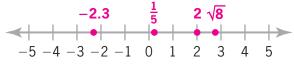
possible answer: to report temperatures

The rational numbers can be written as $Q = \frac{\left\{\frac{a}{b}: a, b \in Z; b \neq 0\right\}}{\left(\frac{a}{b}: a, b \in Z; b \neq 0\right)}$ A ratio is another name for a **fraction** and belongs to the set of rational _ numbers.

(5) Where could you see rational numbers used in the real world?


possible answers: gas prices, shoe sizes, ruler measurements

The set of real numbers that are not rational is called irrational numbers.


Irrational numbers include numbers such as possible answers: π , $\sqrt{2}$, and other nonterminating and nonrepeating decimals.

The set which is the union of the rational numbers and the irrational numbers is called the set of real _____ numbers. This set is represented by the letter $\frac{R}{}$.

Use the space below to draw the Venn diagram of the real numbers.

Use the number line to graph the numbers –2.3, 2, $\sqrt{8}$, and $\frac{1}{5}$.

Module 1 Lesson 1

2

Guided Notes