\qquad
Module 8 Points, Lines, Angles, and Triangles
Lesson 7 Right Triangles

Lesson Notes

 8.7
Lesson Objectives

- Prove and use the Pythagorean Theorem.
- Use special right triangles to solve real-life problems.

Subtopic 1 The Pythagorean Theorem

In a right triangle, the sum of the squares of the lengths of the \qquad is equal to the square of the length of the \qquad .
$a^{2}+b^{2}=$ \qquad

A 20-foot ladder is placed against a building, so its base rests 12 feet from the base of the building. How high up the building does the ladder reach?

Martha hikes from a ranger station eight miles south, then 12 miles west to a camp. To the nearest hundredth of a mile, what is the direct distance between the ranger station and the camp?

A 30-foot wire runs from the top of a telephone pole to a point on the ground eight feet from the base of the pole. What is the height of the telephone pole to the nearest foot?

Subtopic 2 Using the Converse of the Pythagorean Theorem

If $a^{2}+b^{2}=c^{2}$, then the triangle is a \qquad .

The lengths of the sides of a triangle are seven, 24 , and 25 inches. Is this a right triangle?

