NAME

Module 7Ratio, Proportion, and PercentLesson 1Square Roots

Lesson Objectives

- Use models to differentiate between perfect squares up to 100 and other numbers.
- Recognize and identify perfect squares and their square roots.
- Represent and solve problem situations that can be modeled by and solved by using the concept of square roots for perfect squares.

Subtopic 1

Number Models

numbers can be modeled with an array that forms a square.

Is 75 a square number?

Is 49 a square number?

Is 100 a square number?

Is 60 a square number?

Subtopic 2 Perfect Squares and Their Square Roots

Tł A	The product of an integer andA square number can only			is a perfect square. with digits 0, 1, 4, 5, 6, or 9.			
Tł th	The square root of a number is an integer that when					by itself equals	
Tł	the symbol $$	_ indicate	s a square	_			
				·			
E	valuate.						
5	√ <u>121</u>	6	$\sqrt{400}$	7	$9^2 + \sqrt{16}$	8	$8^2 + \sqrt{36}$

Subtopic 3 Problem Solving Using Squares and Square Roots

To find the area of a square, square the length of a _____. $A = s^2$ To find the ______ of a side of a square, take the square root of the area. $s = \sqrt{A}$

A checkerboard has 32 red squares and 32 black squares. How many squares long is each side of the checkerboard?