\qquad
Module 7 Ratio, Proportion, and Percent
Lesson 1 Square Roots 7.1

Lesson Objectives

- Use models to differentiate between perfect squares up to 100 and other numbers.
- Recognize and identify perfect squares and their square roots.
- Represent and solve problem situations that can be modeled by and solved by using the concept of square roots for perfect squares.

Subtopic 1 Number Models

\qquad numbers can be modeled with an array that forms a square.

Is 75 a square number?

Is 49 a square number?

Is 100 a square number?

Subtopic 2 Perfect Squares and Their Square Roots

The product of an integer and \qquad is a perfect square.
A square number can only \qquad with digits $0,1,4,5,6$, or 9 .
The square root of a number is an integer that when \qquad by itself equals the given number.
The symbol $\sqrt{ }$ indicates a square \qquad .

Evaluate.

$\sqrt{121}$

$7 \quad 9^{2}+\sqrt{16}$
$8 \quad 8^{2}+\sqrt{36}$

Subtopic 3 Problem Solving Using Squares and Square Roots

To find the area of a square, square the length of a \qquad . $A=s^{2}$
To find the \qquad of a side of a square, take the square root of the area. $s=\sqrt{A}$

A checkerboard has 32 red squares and 32 black squares. How many squares long is each side of the checkerboard?

