\qquad
Module 5 Decimal Operations, Exponents, and Powers
Lesson 6 Powers and Exponents

Lesson Notes 5.6

Lesson Objectives

- Use factors of numbers to introduce exponents and powers.
- Demonstrate an understanding of exponents and powers and an understanding of when to use exponents and powers in expressions.
- Define negative exponents.
- Solve problems with exponents and powers.

Subtopic 1 Exponents and Powers

- An \qquad is a number that tells how many times a \qquad is used as a factor.
- 4 is used as a factor \qquad times, so 4 to the $3^{\text {rd }}$ power is written as \qquad .
- A \qquad is a number raised to an exponent.
- $\operatorname{In} 4^{3}=64,4$ is the \qquad and 3 is the \qquad .
- A negative number raised to a positive odd power has a \qquad value.
- A negative number raised to a positive even power has a \qquad value.

Write in exponential form.
$(-6) \times(-6) \times(-6) \times(-6) \times(-6)$

Evaluate 2 to the $6^{\text {th }}$ power.

Subtopic 2 Using Exponents and Powers in Expressions

Evaluate each expression.

Subtopic 3 Zero and Negative Exponents

- Any nonzero number raised to the zero power equals \qquad .
- $b^{0}=$ \qquad $(b \neq$ \qquad
- Any nonzero number raised to a negative power is the same as one over the number raised to the \qquad power.
- $b^{-n}=\underline{1}(b \neq \ldots)$

Evaluate each expression.

$$
82^{6} \times 8^{0}
$$

Subtopic 4 Solving Problems with Exponents and Powers

Computer memory can be measured in bits, bytes, or kilobytes. There are 2^{3} bits in a byte and 2^{10} bytes in a kilobyte. How many bits are there in a kilobyte?

NAME
 Module 5 Decimal Operations, Exponents, and Powers
 Lesson 6 Powers and Exponents

Irma won a math contest. On the first day she received $\$ 4$. Then, for each day after the first day, she received double the preceding day's amount. How much money did Irma receive on the fifth day?

