Lesson Notes

Module 11 Transformation of Shapes Lesson 2 Rotations

Lesson Objectives

- Perform rotations of two-dimensional figures using a variety of methods.
- Draw and describe the results of rotations about the origin (90° and 180°).

Subtopic 1 Rotations of Two-Dimensional Figures

Rotation

- A transformation in which a figure is turned through a ____ about a ____
- The fixed point is called the ______.
- The given angle is called the ______

Unless told otherwise, rotate in a direction.

Rotate the figure 45° , 90° , 180° , and 270° with the origin as the center of rotation.

Rotate the figure 90° , 180° , and 270° with the origin as the center of rotation.

Subtopic 2 Rotations Using Ordered Pairs

To rotate a point 90° counterclockwise about the origin:

- Take the opposite of the _____.
- _____ the *x* and *y*-coordinates.
- $(a, b) \rightarrow (-b, a)$

To rotate a point _____ about the origin:

- Take the opposite of ______.
- $(a, b) \rightarrow (-b, -a)$

To rotate a point _____ counterclockwise about the origin:

- Take the opposite of the _____.
- Exchange the *x* and *y*-coordinates.
- $(a, b) \rightarrow (b, -a)$

Module 11 Transformation of Shapes Lesson 2 Rotations

Rotate the point (2, 4) around the origin 90° , 180° , and 270° .

Rotate the parallelogram around the origin 90° and 180°.

