\qquad
Module 11 Transformation of Shapes
Lesson 1 Translations and Reflections

Lesson Notes

 11.1
Lesson Objectives

- Perform translations and reflections of two-dimensional figures using a variety of methods (paper folding, tracing, graph paper).
- Draw and describe the results of translations and reflections about the x - and y-axis.

Subtopic 1 Translations

A \qquad is a change in the position, shape, or size of a geometric figure.

Translations, \qquad , and \qquad are three types of transformations that are basic rigid motions of geometry.

Translation (\qquad)

- Transformation that slides each of the points of a figure the same \qquad in the same direction
- Slides a figure \qquad , vertically, or diagonally along a line without turning

The resulting figure after a translation is called the \qquad of the original figure.

- Are \qquad
- Have the same orientation

Motion rule

- Describes a transformation made in a coordinate plane
- Movements left and down are \qquad .
- Movements \qquad and \qquad are positive.

Tell whether the figure shown and its image show a translation. Explain your answer.

真
Translate $\triangle Q S R$ using the rule $(x, y) \rightarrow(x-4, y-3)$. Give the coordinates of Q^{\prime}, R^{\prime}, and S^{\prime}.

\qquad
Module 11 Transformation of Shapes
Lesson 1 Translations and Reflections
, the motion rule for the transformation of rectangle $A B C D$ into rectangle $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$.

Subtopic 2 Reflections

- A reflection flips each point of a figure across a line and produces a congruent
\qquad .
- A reflection is sometimes called a \qquad .
- A line of \qquad is the line over which an image is flipped.

Reflection across y-axis:

- The x-coordinate is the \qquad .
- The y-coordinate is the same.
- $(x, y) \rightarrow(-x, y)$

Reflection across \qquad :

- The x-coordinate is the \qquad .
- The y-coordinate is the opposite.
- $(x, y) \rightarrow(x,-y)$

Tell whether the figure and its image show a reflection. Explain your answer.

6

Reflect $\triangle A B C$ across the y-axis.
Give the coordinates of A^{\prime}, B^{\prime}, and C^{\prime}.

Write the motion rule for the transformation of square $L M N P$ into square $L^{\prime} M^{\prime} N^{\prime} P^{\prime}$.

