\qquad
Module 10 Coordinate Geometry and Spatial Visualization Lesson 4 Three-Dimensional Shapes

Lesson

 Notes 10.4
Lesson Objectives

- Identify three-dimensional geometric figures using models (rectangular prisms, cylinders, cones, pyramids, and spheres).
- Use properties of standard three-dimensional shapes to identify, to classify, and to describe them.

Subtopic 1 Polyhedra: Prisms and Pyramids

A \qquad is a three-dimensional geometric figure.
A solid is called a polyhedron in which all the surfaces, called faces, are \qquad .
\qquad -- pl of polyhedron.

The intersections of the faces are the \qquad .

The points where three or more edges \qquad are the vertices.

Polyhedra are classified by the number of \qquad .

Platonic solids

- \qquad regular polyhedrons
- Exactly \qquad different ones

A polyhedron with four faces is a \qquad .

A polyhedron with \qquad faces is a hexahedron.

A polyhedron with eight faces is an \qquad .

A polyhedron with \qquad faces is a dodecahedron.

A polyhedron with 20 faces is an \qquad .

Polyhedra are convex or \qquad .

A polyhedron is \qquad if a line segment that lies entirely inside or on the polyhedron can connect all sets of two points on its surface.

A polyhedron is regular if all its \qquad are congruent regular polygons.

A \qquad has two congruent parallel faces.

The congruent \qquad faces are called bases.

The \qquad faces are rectangles or parallelograms.

The altitude of a prism is a \qquad segment that joins the planes of the bases.

A pyramid has \qquad base that can be any polygon.

The lateral faces are \qquad that meet at a common vertex.

The altitude is the perpendicular segment from the base to the \qquad .
Prisms and pyramids are named by the shapes of their \qquad .

How many faces, edges, and vertices does each solid have?

Classify each polyhedron.

NAME
 \qquad
 Module 10 Coordinate Geometry and Spatial Visualization Lesson 4 Three-Dimensional Shapes

Sketch a rectangular prism.

Identify which of these figures is the polyhedron.

Classify each polyhedron as convex or nonconvex.

Subtopic 2 Spheres, Cylinders, and Cones

A \qquad is the set of all points in space that are a given distance from a fixed point called the \qquad of the sphere.

A sphere does not have \qquad or vertices.

A line segment from the center of the sphere to a point on the sphere is a \qquad .

A cylinder has two parallel congruent \qquad bases.

The bases are connected by a curved \qquad surface.

The \qquad is a line segment that joins the planes of the bases and is perpendicular to the bases.
The radius of a \qquad is also called the radius of the cylinder.

A \qquad has one circular base and a single vertex.
The altitude is the perpendicular segment from the plane of the base to the \qquad .
The radius of the base is also called the \qquad of the cone.

Identify each solid.

7 How is a sphere different from a cylinder?

Explain how to find the altitude and radius of each solid.

