NAME

Coordinate Geometry and Spatial Visualization Module 10 Lesson 3 **Coordinate Geometry**

Independent Practice

Find the distance from point A to point B. Then, find the coordinate of the midpoint of \overline{AB} .

1.
$$(-10-8-6-4-2 \ 0 \ 2 \ 4 \ 6 \ 8 \ 10)$$
2. $(-10-8-6-4-2 \ 0 \ 2 \ 4 \ 6 \ 8 \ 10)$

3.
$$(-10-8-6-4-2 \ 0 \ 2 \ 4 \ 6 \ 8 \ 10)$$

4.
$$\stackrel{A}{\longleftarrow} \stackrel{B}{\longleftarrow} \stackrel{B}{\longleftarrow} \stackrel{A}{\longleftarrow} \stackrel{A}{\longrightarrow} \stackrel$$

Find the distance from point A to point B.

5.

6.

7. Find the distance from (-3, 7) to (9, 2).

8. Find the distance from (-2, -4) to (6, -1).

Find the slope.

9.

10.

Module 10 Coordinate Geometry and Spatial Visualization Lesson 3 Coordinate Geometry

11. Find the slope of any line parallel to line p.

12. Find the slope of any line perpendicular to line q.

Journal

- 1. What does it mean for a point to be the midpoint of a segment? Explain how to find the coordinate of the midpoint of a segment on a number line when you know the coordinates of the endpoints of the segment.
- 2. Describe what you can tell about the slope of a line just by looking at the line.
- 3. Which is steeper: a line with a slope of $\frac{1}{2}$ or a line with a slope of $\frac{1}{8}$? Explain.
- **4.** Which is steeper: a line with a slope of $\frac{1}{2}$ or a line with a slope of $-\frac{1}{2}$? Explain.

Cumulative Review

 $\triangle APE \cong \triangle BUG$

- 1. Which angle corresponds to $\angle P$?
- **2.** Which segment corresponds to \overline{AE} ?

Write the ordered pair representing each point.

- **3.** A
- **4.** *B*
- **5.** *C*

Plot and label each point.

- **6.** D(0, -2)
- 7. *E*(-3, -4)
- **8.** *F*(1, -3)

- **9.** Graph the line that contains (-3, -1) and (6, -2).
- 10. Graph and classify the triangle with vertices at the origin, (2, 2), and (5, 0).

Additional Work Area

© 2006 BestQuest