NAME

Module 20 Solving Problems Using Probability, Statistics, and Discrete Math
Lesson 4 Solving Discrete Mathematics Problems

DATE

additional
practice

Use the following graph for Questions 1-3. The graph represents bus routes.

1. Find the degree of the vertices. \qquad
\qquad
2. Melissa wants to travel each of the routes on the map. Is there a traversable path she could take so that she travels each route exactly once? \qquad
\qquad
3. If there is a traversable path, give the path. If not, explain the reason there is not a traversable path. \qquad
\qquad
Use the following graph for Questions 4-6. The graph represents the streets in a neighborhood. Harry delivers newspapers throughout this neighborhood on his bicycle. At least one house on each street receives a paper.

4. Vertex A has a "loop." The degree of vertex A is 3 . Find the degrees of the remaining vertices. \qquad
5. Harry needs to bike down each street. Is there a traversable path he could take so that he bicycles each street exactly once? \qquad
6. If there is a traversable path, give the path. If not, explain the reason there is not a traversable path. \qquad
\qquad
\qquad
Use the following graph for Questions 7 and 8. The town council is proposing to add a new road to the neighborhood as shown with the dotted line.

7. With the new street, does Harry have a traversable path?
\qquad
\qquad
\qquad
8. If there is a traversable path, give the path. If not, explain the reason there is not a traversable path. \qquad
\qquad
Use the following graph for Questions 9-11. The graph represents e-mail messages sent between friends last week.

9. What does the edge between vertex "Anna" and vertex "Tim" represent?
\qquad
10. Who communicated with the most people via e-mail last week? \qquad
11. Who communicated via e-mail with Jon? \qquad

For each problem, match each graph with its equivalent graph in the second column and write its corresponding letter as the answer.
12. \qquad

13. \qquad

14. \qquad

15. \qquad

a.

b.

c.

d.

