NAME

Module 14 Graphing Quadratic Relations
 Lesson 3 Solving Problems Using Quadratic Graphs

DATE

additional practice

1. The equation $h=-16 t^{2}+2 t+28$ describes the height of a diver off a cliff with respect to time, where h is height in feet above the water and t is time in seconds after the jump. Just prior to the jump, $t=0$. Answer the following questions:
a. What is the initial height of the diver?
b. What is the maximum height of the diver?
c. About how long did it take the diver to reach the water?
d. Graph the equation to show the height of the diver with respect to time.

2. John has 30 feet of fencing to use on a rectangular kennel for his dog. Answer the following questions:
a. Write an expression for the area of the kennel in terms of its width, w.
b. What is the approximate maximum area of the kennel?
c. What is the approximate width of the kennel for the maximum area?
d. What is the shape the kennel with maximal area?
e. Graph the equation for area to show the kennel's area with respect to width.

3. The height of an object being dropped is modeled by the equation $h=-16 t^{2}+k$, where h is the height of the object in feet; t is time in seconds; and k is the initial height in feet. A pebble is dropped from an initial height of 144 feet. Answer the following questions: a. Graph the equation to model the height of the pebble dropped over time.

b. About how long will it take for the pebble to reach a height of zero?
[^0]
[^0]: © 2003 BestQuest

