NAME

Module 1 Getting Ready for Algebra
Lesson 1 Defining Sets and Real Numbers

DATE
additional practice

Identify all the sets of numbers to which each of the following belong.

1. -5 \qquad 2. 6 \qquad
2. $-4 \frac{2}{5}$
\qquad 4. $\sqrt{3}$ \qquad
\qquad
\qquad
\qquad

If possible give an example of a number that is.

Abstract

\qquad

5. a whole number but not a natural number. \qquad
6. both a whole number and an irrational number. \qquad
7. both a natural number and an integer. \qquad
8. both an integer and a rational number.
9. both a natural number and a real number. \qquad
10. both a natural number and an irrational number. \qquad
11. a rational number but not a whole number. \qquad
12. a whole number but not a rational number. \qquad

Graph the numbers on the number line provided.
13. $0.5,-0.3,-2.5, \frac{1}{6},-1$, and π

15. $\frac{1}{4},-\pi,-0.6, \frac{7}{6}$, and $-2 \frac{3}{4}$

14. $-1, \frac{1}{2},-0.2, \sqrt{3}$, and -2

16. $2,-1.75, \frac{4}{5},-3.1$, and $\frac{\pi}{2}$

Determine whether each statement is true or false. If a statement is false, provide an example to show that it is false.
17. The product of two integers is also an integer.
19. The quotient of two natural numbers is also a natural number. \qquad
18. The sum of two irrational numbers is also an irrational number. \qquad
20. The difference of two rational numbers is also a rational number. \qquad

To describe each of the following examples, identify the most reasonable set of numbers from which to choose.
21. Your normal body temperature:
23. Circumference of a circular hot tub divided by its diameter:
\qquad
25. Price of a music CD plus sales tax:
27. Baseball batting average:
29. Change in stock market prices:
\qquad
22. Temperatures at the North Pole:
24. A student's algebra test average:
26. Score from a football game:
28. Car odometer reading:
30. The square root of 19 :
\qquad

