NAME

Module 9 Using Functions
Lesson 6 Evaluating Composite Functions

DATE

Evaluate.

$$
\begin{aligned}
& \text { 1. }(f \circ g)(4) \text { and }(g \circ f)(4) \\
& f(x)=-5 x \\
& g(x)=x+6
\end{aligned}
$$

3. $(f \circ g)(2)$ and $(g \circ f)(2)$
$f(x)=-x-4$
$g(x)=x+5$
4. $(f \circ g)(0)$ and $(g \circ f)(0)$
$f(x)=x^{3}$
$g(x)=x^{2}$
\qquad
\qquad
5. $(f \circ g)(-8)$ and $(g \circ f)(-8)$

$$
\begin{aligned}
& f(x)=x^{2}-20 \\
& g(x)=4
\end{aligned}
$$

\qquad
\qquad
© 2003 BestQuest
$(f \circ g)(2)$ and
$f(x)=\frac{3}{x-4}$
$g(x)=2 x$
\qquad
\qquad

For each pair of functions, find $f(g(x))$ and $g(f(x))$.

$$
\text { 9. } \begin{gathered}
f(x)=-6 x \\
g(x)=3 x
\end{gathered}
$$

\qquad
\qquad
11. $f(x)=-x^{2}$
$g(x)=2 x$
\qquad
\qquad
13. $f(x)=\frac{x+2}{x-2}$
$g(x)=2$
\qquad
\qquad
15. $f(x)=\frac{x}{3}$
$g(x)=9 x$
\qquad
\qquad
10. $f(x)=x-1$
$g(x)=-5 x$
12. $f(x)=-2 \sqrt{x}$
$g(x)=9 x^{2}$
14. $f(x)=2 x^{2}$
$g(x)=x+3$
\qquad
16. $f(x)=10$
$g(x)=\sqrt{x+15}$

Determine whether the given functions are inverse functions.
17. $f(x)=4 x+3$
$g(x)=4 x-3$
\qquad
\qquad
\qquad
19. $f(x)=4 x+8$
$g(x)=\frac{1}{4} x-2$
\qquad
\qquad
\qquad
© 2003 BestQuest
18. $f(x)=3 x$
$g(x)=\frac{x}{3}$
\qquad
\qquad
\qquad
20. $f(x)=-2 x+1$
$g(x)=2 x-1$
\qquad
\qquad
\qquad

Journal

1. A student claims that the composition of the functions $f(x)=x+a$ and $g(x)=x+b$, where a and b are constants, is $f(g(x))=x+(b+a)$. Prove or disprove their theory.
2. A manufacturer of big-screen TVs is offering a $\$ 100$ and 10% off. If p is the original price of the television, write composite functions showing the discounts taken in both orders. Which discount should a smart customer insist be applied first? Explain.
3. A legislator wants to pass a bill in which a $\$ 100$ million budget is decreased by 10% each year for two years. The legislator believes this action will reduce the budget to $\$ 80$ million. Do you agree? Explain.
4. In this lesson, the sale price of Lizzie's shoes was found using the composite function $f(g(x))=0.32 x$, showing two successive discounts of 60% and 20%. Write a general rule to show a composite function that can be used to find the sale price of an item after successive discounts of $m \%$ and $n \%$. Explain your steps.
5. When is a composite function undefined? Give an example of functions $f(x)$ and $g(x)$ such that $f(g(x))$ is defined but $g(f(x))$ is not defined, in the real number system.

Cumulative Review

Graph each linear equation.

1. $y=-2 x+5$

2. $y=\frac{2}{3} x-4$

3. $y=6$

4. $3 x+2 y=6$

Solve.
5. $2 x+4=-4 x+4$
6. $3(x+2)=8 x-9$
7. $-x+4=-2 x+10$
8. $\frac{1}{2} x-8=5 x+1$
9. $3 x-4=6 x-6$
10. $3(-2 x+6)=-4 x+2$

