## NAME

Module 6 Solving Absolute Value Equations and Inequalities
Lesson 3 Solving Inequalities Using "Absolute Value is Less Than"

## DATE

Solve each inequality and graph the solution set.

1. $|r| \leq 4$ $\qquad$

2. $|f-3.5| \geq 4$ $\qquad$

3. $\left|3+\frac{q}{2}\right|<1$

4. $\frac{|4 w|}{2}<6$ $\qquad$


Match the graph to the correct inequality.
9.

10.

A. $|c+1.5| \leq 1$
B. $|c-1| \leq-2.5$
C. $|c+2.5| \leq 1$
D. $|c+4.5| \leq 6$
A. $4+|x| \leq 6$
B. $2+|x|<2$
C. $2+|x| \leq 2$
D. $4+|x|<6$
2. $\left|\frac{c}{5}\right|<-2$

4. $|5 m-5| \leq 20$ $\qquad$

6. $|y|-4 \leq-1$

8. $4|3 b+1|<0$ $\qquad$


## Journal

1. Why does the inequality $2|9 k+4|<0$ have no solution?
2. Is $3(x+2) \mid<15$ the same as writing $3|x+2|<15$ ? Verify your answer by solving each inequality.
3. Write an absolute value inequality using "less than" whose solution is graphed below. Explain how you found your answer.

4. Explain why the inequality $|x|<5$ can mean the distance between zero and $x$ is less than 5 .
5. Use your response to question 4 to explain what distance is represented by $|y-3|<2$.

## Cumulative Review

## Rewrite each sentence as an algebraic equation or inequality.

1. Four times a number $b$ is equal to nineteen.
2. Five is less than a number $m$ squared.
3. Twelve increased by $m$ is greater than $n$ increased by two.
4. Half of $y$ decreased by seven is equal to $z$.
5. Seven times $j$ is no more than $k$.
© 2003 BestQuest
6. Five less than a number $m$ squared is two.
7. The product of $x, y$, and $z$, is zero.
8. A number $k$ increased by $g$ is equal to the sum of $k$ and $h$.
9. Ten divided by $p$ is at least negative sixteen.
10. Eight more than the square root of $x$ is nine.
