NAME

Module 6 Solving Absolute Value Equations and Inequalities
Lesson 1 Solving Basic Absolute Value Equations

DATE

independent
practice

Solve the following absolute value equations.

\qquad
3. $|x+1|=2$ \qquad
2. $|x|=-4$
4. $|x+3|=6$ \qquad
5. $|x+3|=12$ \qquad 6. $|x+6|=7$ \qquad
7. $|x+2|=7$ \qquad 8. $|x+9|=1$ \qquad
9. $|x+1|=3$ \qquad
11. $|x+7|=4$ \qquad
10. $|x+1|=7$
12. $|x+5|=5$ \qquad
13. $|x-8|=4$ \qquad 14. $|x-3|=1$ \qquad
15. $\left|\frac{x}{2}\right|=3$ \qquad 16. $\left|\frac{x}{4}\right|=5$ \qquad
17. $\left|\frac{x}{3}\right|=0$ \qquad 18. $\left|\frac{x}{3}\right|=4$ \qquad
19. $\left|\frac{x}{2}\right|=2$

20. $\left|\frac{x}{2}\right|=6$ \qquad

Journal

1. When solving for the variable in absolute value equations, why is there often more than one solution?
2. How do absolute value problems and the symbol \pm translate into disjunction statements? Give examples.
3. George says that the solution to the inequality $|x-8|=4$ is $x=12$. Sally says that the solution is $x=12$ or -4 . Who is correct and why?
4. How many numbers are in the solution set of the equation $|x+3|=6$?
5. Can you think of situations where there would be only one number in the solution set to solve an absolute value equation?
6. Explain how to solve $\left|\frac{x}{4}\right|=5$.

Cumulative Review

Solve by inspection.

1. $6 \mathrm{~J}=12$
2. $4 y=-16$
3. $M \cdot 7=-21$
4. $Q \cdot-27=0$
5. $T \cdot(-8)=-24$ \qquad
6. $42 \div F=7$
7. $57 R=0$
8. $\frac{K}{5}=3$
9. $45 \div D=-9$
10. $\frac{T}{-2}=50$
