UBM06BLM/AK_6	1378 2/5/03	6:10 PM Page 179 (Black plate	ф <u> </u>	DIGITAL
	NAME			DATE
	Module 6	Solving Absolute Value Equatio	ns and	independent
	Lesson 1	Solving Basic Absolute Value Equations		practice
	Solve the following absolute value equations.			
	1. $ x = 7$		2. $ \mathbf{x} = -4$	
	3. x + 1 =	2	4. x + 3 =	= 6
	5. x + 3 =	12	6. x + 6 =	= 7
	7. x + 2 =	7	8. x + 9 =	= 1
	9. x + 1 =	3	10. x + 1 =	= 7
	11. x + 7 =	4	12. x + 5 =	= 5
	13. x - 8 =	4	14 . x - 3 =	= 1
	15. $\left \frac{x}{2}\right = 3$ _		16. $\left \frac{x}{4}\right = 5$	
	17. $\left \frac{x}{3}\right = 0$		18. $\left \frac{x}{3}\right = 4$	
	19. $\left \frac{X}{2}\right = 2$		20. $\left \frac{x}{2}\right = 6$	
	4	n. stalle	4	

Journal

- **1.** When solving for the variable in absolute value equations, why is there often more than one solution?
- **2.** How do absolute value problems and the symbol \pm translate into disjunction statements? Give examples.
- **3.** George says that the solution to the inequality |x 8| = 4 is x = 12. Sally says that the solution is x = 12 or -4. Who is correct and why?
- **4.** How many numbers are in the solution set of the equation |x + 3| = 6?
- **5.** Can you think of situations where there would be only one number in the solution set to solve an absolute value equation?
- **6.** Explain how to solve $\left|\frac{x}{4}\right| = 5$.

© 2003 BestQuest

Module 6 Lesson 1

DIGITAL

Cumulative Review

Solve by inspection.

Module 6 Lesson 1

Independent Practice