NAME

Module 5 Solving Linear Inequalities of One Variable
Lesson 3 Solving Two-Step Linear Inequalities

DATE
practice

Solve the following inequalities. Then graph each solution on a number line.

1. $3 M+2 \geq 8$ \qquad

2. $7 x+6<20$ \qquad

3. $3 T+3>12$ \qquad

4. $3 y+4 \leq 10$ \qquad

5. $-9 c+3 \geq 30$ \qquad

6. $-11 A+2<24$ \qquad

7. $\frac{x}{4}-2 \leq 1$

8. $4 y+8>20$ \qquad

9. $-3 z-6 \geq-9$

10. $-5 V-7 \leq 8$ \qquad
11. $\frac{x}{3}-1 \leq 2$ \qquad
12. $\frac{N}{2}-5>1$ \qquad

13. $-3 z+6 \geq 12$ \qquad
14. $-5 V+4 \leq 29$ \qquad

15. $-3 z+7 \geq 1$ \qquad 20. $-5 V+9 \leq 4$ \qquad

Journal

1. Explain why you undo addition and subtraction before multiplication and division when solving an inequality algebraically.
2. Describe how you would solve and graph the solution to the inequality $2 x-4 \geq 4$.
3. Fred says that the solution to the inequality $-2 x+3<7$ is $x<-2$. Sally says that the solution is $x>-2$. Who is correct and why?
4. Explain why you would use algebra instead of inspection for solving two-step inequalities.
5. Explain how to solve two-step inequalities.

Cumulative Review

Simplify each expression.

1. $\frac{7}{9}+\frac{2}{3}$
2. $\frac{3}{4}-\frac{2}{3}$
3. $\frac{4}{5}-\frac{1}{3}$ \qquad 4. $\left(-\frac{3}{5}\right)\left(\frac{1}{5}\right)$
\qquad
\qquad
© 2003 BestQuest
$0.5-\frac{2}{8}$
4. $\left(-\frac{1}{2}\right)\left(\frac{3}{7}\right)$
5. $\left(\frac{5}{12}\right)\left(\frac{4}{5}\right)$ \qquad
6. $\frac{1}{3}-\frac{7}{9}$
7. $\left(\frac{2}{3}\right)\left(-\frac{1}{8}\right)$
8. $\frac{1}{2} \div \frac{1}{8}$
