NAME

Module 5 Solving Linear Inequalities of One Variable
Lesson 1 Solving Linear Inequalities by Inspection

Graph each inequality on a number line.

$$
\text { 1. } M \geq-3
$$

3. $x<8$

5. $T>0$

9. $y \leq-4$

8. $r>-5$

Solve the following inequalities by inspection. Then graph each solution on a number line.
11. $w+5 \geq 8$ \qquad

13. $P-10 \leq-17$

15. $7 c \geq-35$ \qquad

16. $12 A<84$ \qquad
14. $K+8>8$ \qquad

17. $\frac{x}{4} \leq 0$ \qquad 18. $\frac{N}{3}>0$ \qquad

Determine if the given number is a solution to the inequality. Explain your answer.
19. $m=-8$ for $-\frac{40}{m} \leq 4$ \qquad
20. $R=4$ for $-\frac{R}{2} \geq-10$ \qquad

Journal

1. Explain why there may be more than one value, for a given inequality, which makes the statement true.
2. Describe how you would draw the solution to the inequality $x \geq 4$.
3. Describe how you would draw the solution to the inequality $x<-6$.
4. If you were comparing two objects, what words or phrases could you use to mean "greater than" or "less than"?
5. Explain how to solve inequalities by inspection.

Cumulative Review

Identify all the sets of numbers to which each of the following belong.

1. -15 \qquad
2. 7 \qquad
\qquad
\qquad
\qquad
\qquad
3. $-2 \frac{3}{5}$ \qquad
4. $\sqrt{17}$ \qquad
\qquad
\qquad

If possible, give an example of a number that is:
5. a whole number, but not a natural number.
7. both a natural number and an integer.
9. both a natural number and a real number.
© 2003 BestQuest
6. both a whole number and an irrational number.
8. both an integer and a rational number.
10. both a natural number and an irrational number.

