UBM04BLM/AK_61378	1/31/03	4:12 PM	Page 79	(Black plate)
				$- \nabla$

DIGITAL

	ME			DATE
		Solving Problems Using Linear Equations of One Variable		independent
Le	sson 3	Solving Geometry Problems Usin Equations of One Variable	ng	independent practice
Nri	te an equa	ntion and solve.		
1.	The perimeter of a square is 200 m. Find the length of each side.		2.	The perimeter of an equilateral triangle is 72 in. Find the length of each side.
3.	•	eter of an equilateral triangle is d the length of each side.	4.	The perimeter of a rectangle is 54 m. The length is 3 m longer than the width. Find the length of the rectangle.
5.	length is 5	eter of a rectangle is 46 m. The m longer than the width. Find the e rectangle.	6.	The perimeter of an isosceles triangle is 25 cm. The base is 4 cm longer than each leg. Find the length of the base.
7.	•	eter of an isosceles triangle is 52 in. 8 8 in. shorter than the base. Find the ach leg.	8.	The perimeter of a scalene triangle is 33 in. The first side is 2 in. shorter than the second side, and the third side is 5 in. longer than the second side. Find the length of the shortest side.
9.	vertex ang	eles triangle, the measure of the le is 5° more than five times the f each base angle. Find the measure ex angle.	10.	In a scalene triangle, the measure of the second angle is 10° greater than the measure of the first angle. The third angle measures 20° more than the first angle. Find the measures of the three angles.
11.	-	neasures 30° more than its nt. Find the measures of the angle nplement.	12.	The measure of an angle is 6° greater than twice the measure of its complement. Find the measure of the angle.

Module 4 Lesson 3

Independent Practice

DIGITAL

- 1. Suppose a classmate was absent and missed today's lesson. Explain to him or her the three-step problem solving-process.
- Make a glossary of terms from geometry that are used in this lesson. Write the definition of each word. Where appropriate, make a sketch to clarify your definition.
- 3. Is the solution to an equation always the solution to a problem? Explain.
- **4.** The formulas P = 2I + 2w and A = lw apply to all rectangles. Explain why these formulas also apply to all squares. Rewrite these formulas so that they could be applied to a square whose side has length *s*.
- **5.** The formula for the perimeter of a rectangle is P = 2l + 2w. Explain how it might be possible to write this formula so that it has only one variable on the right side. Use problem 5 at the beginning of this Independent Practice to help you explain your answer.

Cumulative Review

Simplify.

1. 3 ² - 10	2. (5 - 8) ³ + 15						
3. 8 – (–2) ³ + 4 ²	4. $\frac{10 - (-2)}{6^2 - 30}$						
5. $\frac{(-4)(8)}{(2)(-2)^3}$							
Identify the property shown in each equation.							
6. 3 + (5 + 8) = (5 + 8) + 3	7. 8 · 1 = 8						
8. $(ab)5 = a(b \cdot 5)$	9. $a + 7 + (-7) = a + 0$						

10. $0 \cdot r = 0$

© 2003 BestQuest

Module 4 Lesson 3

Independent Practice