NAME

Module 3 Solving Linear Equations of One Variable
Lesson 6 Rewriting Formulas

DATE

Rearrange each formula to isolate the variable indicated.

1. $A=p h$ for p
2. $A=p h$ for h
3. $A+B+C=180$ for B
4. $x+y=90$ for x
5. $A+B+C=180$ for A
6. $x+y=180$ for y
7. $M=\frac{(x+y)}{2}$ for y
8. $A=\frac{1}{2} m n$ for m
9. $E=m c^{2}$ for m
10. $h=\frac{s \sqrt{3}}{2}$ for s
11. $V=\frac{A h}{3}$ for h
12. $s=r \theta$ for θ
13. $a^{2}+b^{2}=c^{2}$ for a

14. $A=\frac{\theta r^{2}}{2}$ for θ

Journal

1. Why is it useful to rewrite equations? Give an example to support your conclusion.
2. Can width always be found by the formula $w=\frac{A}{l}$. Why or why not?
3. How are perimeter and area alike and different?
4. Why is it necessary to be able to convert degrees Fahrenheit to degrees Celsius and vice versa?
5. Using the formula $d=r t$, explain how you would find time if you knew the distance and the rate.

Cumulative Review

Simplify.

1. $7.25-9.3$
2. $5 \frac{2}{3}+7 \frac{1}{3}$
3. $-\frac{5}{11}+\left(-\frac{3}{11}\right)$
4. $17-3 \frac{4}{5}$
5. $\sqrt{\left(5^{2}-4 \cdot 1 \cdot 3\right)}$
6. $4^{3}-3^{2}$
\qquad
\qquad
\qquad
\qquad

Supply the missing properties in the following algebraic proof.
$2 x+5=68-x$
$2 x+5+x=68-x+x$
$3 x+5=68$
$3 x+5-5=68-5$
$3 x=63$
$\frac{3 x}{3}=\frac{63}{3}$
$x=21$
7.
8. \qquad
9. \qquad
10. \qquad

