NAME		DATE		Jeron
Module 20 Lesson 3	Solving Problems L Statistics, and Disc Solving Advanced F	Ising Probability, rete Math Probability Problem	s pr	dependent actice
A jar contains 1 . Find the pro	eight green and two y obability of drawing two y	r ellow marbles. vellow marbles <i>without</i>	replacement.	Accessed
2. Find the pro	obability of drawing two y	vellow marbles with rep	lacement.	
3. Find the prowithout repl	bbability of drawing first a	a green marble and the	en, a yellow marble	2
4. Find the prowithout replacement	bbability of drawing first a	a yellow marble and th	en, a green marble	2
5. Find the propability three indep	obability of drawing three of two independent even endent events P(A and B	yellow marbles with rests rule: $P(A \text{ and } B) = P(A) \cdot P(B) \cdot$ and $C) = P(A) \cdot P(B) \cdot$	eplacement. Extend (A) · P(B) to include P(C).	d the e
The Gray fami problems the each of the ou 'G" represent events rule: P P(A and B and 6. P(B then B	ily has decided to have probability of having a itcomes found below for "boy" and "girl." Exter (A and B) = $P(A) \cdot P(B)$ I C) = $P(A) \cdot P(B) \cdot P(C)$ then B)	e three children. Ass boy is $\frac{1}{2}$. Determine or the Gray family. T nd the probability of) to include three ind ;). 7.	ume for these the probability o he letters "B" an two independent lependent events P(B then G then G)	of nd : s
	then G)	9.	P(G then G then B))
8. P(G then B				

 \oplus

A counselor selects two students from the school's honor society membership to attend a conference by randomly pulling names from a bowl. The bowl contains the names of five freshmen, four sophomores, six juniors, and five seniors.

10. Find the probability two seniors were chosen.

- **11.** Find the probability a freshman and then a sophomore were chosen.
- **12.** If the counselor picked an extra name to act as an alternate, find the probability that all three names were juniors. Extend the probability of *two dependent events rule*: $P(A \text{ then } B) = P(A) \cdot P(B \text{ after } A)$ to include three dependent events $P(A \text{ then } B \text{ then } C) = P(A) \cdot P(B \text{ after } A) \cdot P(C \text{ after } A \text{ and } B).$

The Libertarian Party has a list of ten candidates, six men and four women, from whom two will be selected to be the Presidential and Vice-Presidential nominees from their party. To answer the following questions, assume the selection of any of the ten candidates is equally likely:

- 13. Find the probability two women are selected.
- 14. Find the probability two men are selected.
- 15. Find the probability a woman is selected for President and a man for Vice-
 - President.
- $\textbf{16. Find the probability a man is selected for President, and a woman is selected for \\$

Vice-President.

17. Examine the answers for Problems 13–16. Which of the four outcomes is most

likely?

© 2003 BestQuest

Module 20 Lesson 3

Independent Practice

Hector is in gym class and will be randomly assigned a partner for a social dancing lesson. He wants to be partnered with Fiona but is unsure of his chances. He is the second boy to get a partner. There are 15 girls in his class, and each pair will be composed of a boy and a girl.

18. What is the probability the first student gets Fiona, so Hector doesn't?

- 19. What is the probability the first student doesn't get Fiona, but Hector does?
- 20. What is the probability the first student doesn't get Fiona, and Hector doesn't

either?

A scientific calculator requires a logic circuit and a keypad assembly. A factory quality control manager reports that 2% of their logic circuits are defective, and 1% of keypad assemblies are defective. Defects are considered to be independent events.

21. Find the probability both the logic circuit and the keypad assembly of a new

calculator will be defective.

22. Find the probability a new calculator will not have a defective logic circuit or a

defective keypad assembly.

- **23.** A quality control manager pulled two finished calculators for inspection. What is the probability neither of these calculators will have a defective logic circuit or a defective keypad assembly?
- **24.** If three logic circuits were randomly selected from the assembly line and tested, what was the probability that all three logic circuits would be free from defects?
- **25.** What is the probability at least one of the three logic circuits will be defective? Use the answer from Problem 24.

Module 20 Lesson 3

DIGITAL

- 1. Explain to a friend the difference between independent and dependent events.
- **2.** Draw a rectangle with a shaded region such that a point in the rectangle has a probability of $\frac{1}{5}$ not being in the shaded region. How do you know you are right?
- **3.** When considering a probability experiment with marble in a bag, explain why it is important to know if the first marble drawn is replaced or not replaced when figuring the probability of the second marble drawn?
- **4.** Reread the directions for Problems 6–9. Kate says that her aunt said, "If a family already has two boys, they will probably have a girl for the third child." Is her aunt right? Explain.
- **5.** Describe a real world problem (different from those in this lesson) that can be solved using either the Independent or Dependent Events Rule. Explain how you know which rule applies.

Cumulative Review

Classify each number as rational, irrational, integer, whole number, or natural number. There will be more than one answer for some problems.

1 . 100	2. $-\frac{2}{3}$
3. 0	4. $\sqrt{7}$
Solve each equation for <i>p</i> .	
5. p = 9	6. p + 5 = 2
7. 2 p = 12	8. 4 p - 6 = 10

Module 20 Lesson 3