NAME

Module 18 Solving Radical Equations
Lesson 2 Solving Multi-Step Radical Equations

DATE

Solve.

\qquad
3. $\sqrt{d}+6=4$ \qquad
5. $\sqrt{p}+3=12$ \qquad
7. $2 \sqrt{r}=8$ \qquad
9. $-8 \sqrt{c}=-32$ \qquad
11. $13 \sqrt{c}=-39$ \qquad
13. $\sqrt[3]{5 h}=5$ \qquad
15. $\sqrt{z+6}=-6$ \qquad
17. $\frac{1}{2} \sqrt{y-7}=4$ \qquad
2. $\sqrt{n}-5=3$ \qquad
4. $-\sqrt{m}+8=5$ \qquad
6. $-\sqrt{q}-7=6$ \qquad
8. $\frac{\sqrt{z}}{3}=5$ \qquad
10. $\frac{2}{5} \sqrt{h}=2$
12. $\frac{7}{\sqrt{z}}=1$ \qquad
14. $\sqrt{h+4}=4$ \qquad
16. $2=\sqrt{2 x}-6$ \qquad
18. $\frac{\sqrt{5 x}}{3}=5$ \qquad
20. $-2 \sqrt[3]{r-5}=6$ \qquad
22. $\sqrt[3]{9 x+10}=4$ \qquad

Journal

1. Explain how to solve the equation $\sqrt{x+5}=6$. Specifically, identify the order in which inverse operations are used to solve the equation and explain why.
2. Solve the equations $\sqrt{x}+3=12$ and $\sqrt{x+3}=12$. How are the steps needed to solve each equation alike? How are they different?
3. To solve the equation $\sqrt{b}+1=4$, Carla wants to square both sides of the equation. Is Carla's method valid? What would you do?
4. Henry solved the equation $-3 \sqrt{x-1}+5=11$ as shown below.

$$
\begin{aligned}
-3 \sqrt{x-1}+5 & =11 \\
-3 \sqrt{x-1} & =6 \\
\sqrt{x-1} & =-2 \\
x-1 & =4 \\
x & =5
\end{aligned}
$$

To check his solution, Henry substituted 5 for x in the equation $x-1=4$ to get the true equation $5-1=4$, and he claimed that his answer was correct. What was his mistake and why?

Cumulative Review

Solve.

1. $-\sqrt{y}=12$
2. $\sqrt{t}=1.4$
3. $-\sqrt[3]{x}=-5$
4. $-\sqrt[4]{j}=-4$

Simplify.
5. $\sqrt{50}$
6. $\sqrt{432}$
7. $\sqrt{5} \cdot \sqrt{3}$
8. $4 \sqrt{2} \cdot 3 \sqrt{2}$
9. $\frac{\sqrt{50}}{\sqrt{2}}$
10. $3 \sqrt{3}+4 \sqrt{2}$

