NAME

Module 18 Solving Radical Equations
Lesson 1 Solving One-Step Radical Equations

DATE

Solve.

\qquad
3. $\sqrt{h}=16$ \qquad
5. $\sqrt{x}=6$ \qquad
7. $-\sqrt{v}=-2$ \qquad
9. $\sqrt{x}=-10$ \qquad
11. $-\sqrt{m}=-0.8$ \qquad
13. $\sqrt[3]{x}=3$ \qquad
15. $-\sqrt[3]{n}=-2$ \qquad
17. $\sqrt[4]{r}=4$ \qquad
19. $-\sqrt[4]{t}=-3$ \qquad
2. $\sqrt{s}=5$ \qquad
4. $\sqrt{k}=4$ \qquad
6. $\sqrt{n}=9$ \qquad
8. $-\sqrt{v}=5$ \qquad
10. $-\sqrt{a}=-4$ \qquad
12. $-\sqrt{f}=-\frac{1}{3}$ \qquad
14. $\sqrt[3]{w}=-1$ \qquad
16. $\sqrt[4]{g}=2$ \qquad
18. $\sqrt[4]{t}=-1$ \qquad
20. $\sqrt[3]{p}=\frac{3}{5}$ \qquad

Journal

1. Jorge is asked for the solution to the equation $\sqrt[4]{w}=-2$. Explain why his solution $w=-16$ is incorrect.
2. Explain how inverse operations can be used to solve radical equations like $\sqrt{b}=4$.
3. For what values of a does the equation $\sqrt{x}=a$ have a solution? Explain.
4. For what values of a does the equation $\sqrt[3]{x}=a$ have a solution? Explain.
5. Rosita solved the equation $\sqrt{x}=-3$ as shown.

$$
\begin{aligned}
\sqrt{x} & =-3 \\
\sqrt{x^{2}} & =-3^{2} \\
x & =-9
\end{aligned}
$$

Identify her mistake. How could Rosita have prevented her mistake?

Cumulative Review

Solve.

1. $\frac{x}{2}=-3$
2. $\frac{3}{x}+\frac{4}{x}=14$
3. $\frac{4}{5}=\frac{2}{x+3}$

Simplify.
4. $\frac{4}{x} \cdot \frac{3 x}{2}$
5. $\frac{2}{3 x} \div \frac{1}{x}$
6. $\frac{1}{3}+\frac{3}{x-2}$
7. $\sqrt{3} \cdot \sqrt{4}$
8. $\sqrt{6} \cdot \sqrt{3}$
9. $\frac{\sqrt{40}}{\sqrt{10}}$
10. $3 \sqrt{3}+5 \sqrt{27}$

