

DIGITAL

- **1.** Jorge is asked for the solution to the equation $\sqrt[4]{w} = -2$. Explain why his solution w = -16 is incorrect.
- **2.** Explain how inverse operations can be used to solve radical equations like $\sqrt{b} = 4$.
- **3.** For what values of *a* does the equation $\sqrt{x} = a$ have a solution? Explain.
- **4.** For what values of *a* does the equation $\sqrt[3]{x} = a$ have a solution? Explain.
- **5.** Rosita solved the equation $\sqrt{x} = -3$ as shown.

$$\sqrt{x} = -3$$
$$\sqrt{x^2} = -3^2$$
$$x = -9$$

Identify her mistake. How could Rosita have prevented her mistake?

© 2003 BestQuest

Module 18 Lesson 1

DIGITAL

Cumulative Review

Solve.

1. $\frac{x}{2} = -3$	2. $\frac{3}{x} + \frac{4}{x} = 14$	3. $\frac{4}{5} = \frac{2}{x+3}$
Simplify.		
$4. \ \frac{4}{x} \cdot \frac{3x}{2}$	5. $\frac{2}{3x} \div \frac{1}{x}$	6. $\frac{1}{3} + \frac{3}{x-2}$
7. $\sqrt{3} \cdot \sqrt{4}$	8. $\sqrt{6} \cdot \sqrt{3}$	9. $\frac{\sqrt{40}}{\sqrt{10}}$
10. $3\sqrt{3} + 5\sqrt{27}$		

Đ

© 2003 BestQuest

Module 18 Lesson 1

Independent Practice