NAME			DATE
Module 13	Solving Quadratic Equations		independent
Lesson 5	Solving Quadratic Equations by the Quadratic Formula		practice
Solve each qu	adratic equation using the quadra	atic form	ula.
1. $n^2 + 4n + 4 = 0$		2.	$w^2-3w-28=0$
3. $x^2 - 24 = -2x$		4.	$y^2 - 15 = 2y$
5. $10y^2 + 29y = -10$		6.	$3t^2 - 2t = -15$
7. $9x = 2x^2 - 2x^2$	- 4	8.	$\overline{3g+5}=4g^2$
9. 8 <i>m</i> ² – <i>m</i> -	- 1= 0	10.	$-11b + 4 = 9b^2$
lse the discri hen, solve th	minant to determine the number of equation using the value of the	of solutio discrimi	ons for each equation. nant.
$17 = m^2$	– <i>m</i>	12.	$5x^2 = 3x - 10$
13. $-x = 5x^2$	- 19	14.	$9y^2 - 7y = 7$

Module 13 Lesson 5

183

Independent Practice

DIGITAL

 Explain why it is important to write qua applying the quadratic formula. 	adratic equations in standard form before
2. What is meant by the symbol \pm in the	quadratic formula?
 Annie solved the following quadratic ec Annie get the correct solution? Explain. 3v² - v 	quation using $a = 3$, $b = -1$, and $c = 2$. Will
 The quantity b² – 4ac is called the dis determine whether a quadratic equatio solutions? Explain. 	scriminant. How does the discriminant n has zero, one, or two real number
Cumulative Review	
actor completely.	
1. 20 – 5 <i>r</i>	2. $t^2 + 5t + 6$
3. $3t^2 - 300$	4. $30x^2 - 5x - 10$
5. $-2x^3 - 2x^2 + 5x + 5$	6. $x^4 - 625$
olve by evaluating square roots, fact	coring, or completing the square.
7. $x^2 = 121$	8. $(x + 4)^2 = -100$
$x^2 + 6x = 20 - 0$	$10 5(x-1)^2 - 2 = 18$

 \oplus

Module 13 Lesson 5

Independent Practice

Graphing Calculator Problem

A quadratic function is of the form $y = ax^2 + bx + c$, where $a \neq 0$. The graph of every quadratic function is a parabola that opens either upward or downward. Such a parabola can intersect the x-axis at zero, one, or two points. The x-coordinates of these points are called the x-intercepts of the graph.

A linear function is of the form y = ax + b (more commonly, y = mx + b). The graph of every linear function is a line. Unless the line is the *x*-axis, a line can intersect the *x*-axis in at most one place. So, the graph of all linear functions except y = 0 has exactly one *x*-intercept.

The solution(s) to the quadratic equation $ax^2 + bx + c = 0$, where $a \neq 0$, is/are the x-intercepts of the graph of the quadratic function $y = ax^2 + bx + c$. The solution to the linear equation ax + b = 0, where $a \neq 0$, is the x-intercept of the graph of the linear function y = ax + b.

You can use your graphing calculator to determine whether an equation is a *linear* equation or a quadratic equation.

Follow the steps below to determine whether the equation $x - 4x^2 = 5$ is linear, quadratic, or neither.

- 1. Write the equation in standard form (one side in decreasing degree of x; the other side equal to zero): $0 = 4x^2 x + 5$
- **2.** Substitute *y* for zero to write the associated function: $y = 4x^2 x + 5$.
- **3.** Enter the function $y = 4x^2 x + 5$ into the calculator; press $\forall =$ then \bigcirc (if needed). With the cursor on the line $Y_1 =$ (user the arrow keys to move it there, if necessary), press **4** $[x_1, e_n]$ *** 5**. See Figure 1.
- **4.** Graph the function; press Aref. Press COM **6** to use the standard window. See Figure 2
- **5.** Look at the shape of the graph. If it is a line, the equation is *linear*. If it is a parabola, it is *quadratic*. If it is neither a line nor a parabola, the function is neither linear nor quadratic. Because the graph of this function is U–shaped, the equation $x 4x^2 = 5$ is quadratic. Because the parabola does not intersect the *x*-axis, the equation $x 4x^2 = 5$ has no real number solutions.

Use your calculator to determine whether each equation is linear, guadratic, or neither.

1.
$$4s^2 - 5 = 0$$

3. $d^2(d + 4) = 0$ **4.** $(x - 3)^2 = x^2$

Module 13 Lesson 5

© 2003 BestQuest

 $3x + 4x^2 = 5$

Independent Practice

 \oplus

Œ

DIGITAL