-		Ψ DIG	iITAL
NAME		DATE	
Module 13	Solving Quadratic Equations	independent	ş.,
Lesson 4	Solving Quadratic Equations by Completing the Square	practice	/
		- Account	
Complete the	square.		
1. $x^2 + 14x -$	+	2. $x^2 - 12x + $	
3. $y^2 + 3y + $		4. $n^2 - 5n + $	
5. <i>H</i> ² +	H + 64	6. $x^2 - \underline{\qquad} x + 81$	
Factor.			
7. $x^2 + 6x + $	9	8. $z^2 + 12z + 36$	
9. m ² - 7m -	+ 49/4	10. $x^2 - 11x + \frac{121}{4}$	
Solve by com	pleting the square.		
11. $x^2 + 10x =$	= 1	12. $x^2 + 14x = -2$	
13. $c^2 - 8c - $	5 = 0	14. $P^2 - 18P + 28 = 0$	
15. $x^2 + 2 = 2$	11 – 8x	16. $x^2 + 14 = 6x + 5$	
17 . 3 <i>r</i> ² – 12 <i>r</i>	+ 4 = 10	18. $4H^2 + 32H + 20 = 4$	
19. $20x + 5x^2$	+ 30 = 10	20. $9 + 2B^2 - 6B = 5$	
ts 21. 8 + 3w ² +	6w = 5	22. $3x + 9x^2 - 7 = -3$	
© 2003 Be			

 $-\phi$

DIGITAL

Journal

- **1.** Abe and Sarah were given the expression $x^2 16x +$ _____ and asked to complete the square. Abe said the answer is $x^2 16x + 256$, and Sarah said the answer is $x^2 16x + 8$. Is either student correct? Explain.
- 2. What are the steps for solving a quadratic equation by completing the square?
- **3.** Explain the process for completing the square in the expression $x^2 \underline{\qquad} x + 36$.
- **4.** Richard and Janelle are challenged with solving the equation $x^2 12x + 17 = 13$. Richard believes the solutions are 13 and -1. Janelle believes the solutions are $6 + \sqrt{32}$ and $6 - \sqrt{32}$. Is either student correct? Describe any possible errors and explain the process for finding the correct solutions.
- **5.** True or False: The solution set for the equation $7x^2 + 4x + 3 = 5$ is

$$\left\{-\frac{2}{7}+\frac{\sqrt{18}}{7},-\frac{2}{7}-\frac{\sqrt{18}}{7}\right\}$$
. Explain.

Cumulative Review

Determine if the equation is quadratic, linear or neither.

1.
$$2x^2 - 3x = 2x^2 - 4x + 1$$
2. $(z + 2)(z - 2) = 0$

3. $d^2(d + 5) = d^3 + 9$
4. $f^2(f^2 + 5f) = f^4 + f^2$

Solve by factoring or by evaluating square roots.
5. $4x^2 - 11 = 53$

6. $3(x + 4)^2 - 16 = 32$

7. $(x - 5)(x + 3) = -7$
8. $(x + 7)(x - 4) = 0$

9. $4x^2 + 12x - 7 = 9$
10. $-5x^2 + 17x = 2x$

© 2003 BestQuest

Module 13 Lesson 4

Independent Practice

DIGITAL

Graphing Calculator Problem

Follow the steps below to solve the equation $x^2 + 8x - 20 = 10$ by graphing the associated quadratic function and finding the x-intercepts. When y = 0 at the x-intercepts, the associated quadratic function becomes the original equation.

- 1. First, replace the equation with an equivalent equation of the form $ax^2 + bx + c = 0$. In this case, subtract 10 from both sides of the equation. The equation becomes $x^2 + 8x - 30 = 0$.
- 2. Enter the associated quadratic function y = x² + 8x 30 into the calculator: Press Y= then CLEAR (if needed). With the cursor on the line Y₁ = (use the arrow keys to move it there, if necessary), press XIBR x² + 8 XIBR - (do NOT use the (-) key) 3 O. See Figure 1.
- Graph the function; press 2000 6 to use the standard window. See Figure 2. This window does not show enough of the graph; press 2000 3 ETER to zoom out.
- **4.** The x-intercepts (the x-values of the points where the graph crosses the x-axis) are the x values that make y = 0. This means that the x-intercepts make $x^2 + 8x 30 = 0$ true and are, therefore, the solutions to the original equation.
- 5. Find the (approximate) first x-intercept; press 2nd CALC 2. Left Bound? will appear in the lower left hand corner of the screen. Use the left and right arrow keys to move the cursor just above the x-axis, to the left of what appears to be the first x-intercept. Press ENTER. Right Bound? will appear in the lower left hand corner of the screen. Use the right arrow key to move the cursor just below the x-axis to the right of this x-intercept. Press ENTER. Guess? will appear in the lower left hand corner of the screen; press ENTER. X = −10.78233 Y = 0 appear in the lower left hand corner of the screen. See Figure 3. These values represent the point (−10.78233, 0) on the graph, where −10.78233 is the calculator's decimal approximation for the true solution, which is irrational. Write this approximate solution on your paper.
- Repeat Step 5 to identify the approximate value of the other x-intercept. Remember to use the left and right arrow keys to move the cursor just to the left of the second x-intercept and then just to the right of the second x-intercept. See Figure 4. You should get 2.78233 as the calculator's decimal approximation.
- **7.** Finally, write the set of approximate solutions for the equation $x^2 + 8x 20 = 10$: $\{-10.78233, 2.78233\}$

Figure 4

175

Independent Practice

Use the graphing calculator to solve (find the approximate roots of) these equations.

1. $4x^2 - 9x + 4 = 6$

2. $-3n^2 + 9n - 1 = 2$

3. $-17D^2 - 31D + 7 = -12$

4. $\frac{1}{6}x^2 - 8x + 7 = 27$

Module 13 Lesson 4