NAME			DATE
Module 13	Solving Quadratic Equations of One Variable		independent
Lesson 2	Solving Quadratic Equations by Evaluating Square Roots		practice
Solve by eval	uating square roots.		
1. <i>x</i> ² = 81		2.	$x^2 = 169$
3. $x^2 = 441$		4.	$x^2 = 49$
5. $3x^2 = 75$		6.	$-4x^2 = 400$
7. $-2x^2 = -$	72	8.	$4x^2 = 60$
9. $2x^2 - 4 =$	- 28	- 10.	$3x^2 + 2 = 149$
11. $(x + 4)^2 =$	81	12.	$(x-2)^2 = 100$
13. $(x + 1)^2 =$	49	14.	$(x - 3)^2 = 196$
15. $(x + 4)^2 =$	11	- 16.	$(x + 7)^2 = 26$
17. 2(x - 3) ²	+ 7 = 135	- 18.	$3(x + 4)^2 + 12 = 12$
19. 3(x - 6) ²	- 5 = 22	20.	$5(x + 3)^2 - 8 = 172$
21. $2(x + 3)^2$	- 2 = 60	22.	$\frac{1}{3(x+1)^2-5}=502$

DIGITAL

- 1. Give one example each of quadratic equations which have zero, one, and two roots.
- **2.** Sonya says that the solutions to $(x 2)^2 = 16$ are 6 and -6. Maggie says the solutions are 6 and -2. Which girl is correct? Explain.
- **3.** Describe how to solve $4(x 2)^2 + 2 = 102$.
- **4.** Lewis solved the equation $x^2 + 9 = 0$ and found the solutions 3 and -3. Where did he make a mistake?
- **5.** Describe the general process used to solve a quadratic equation by evaluating square roots.

Cumulative Review

Simplify.	
$1. \ 2x^4(y^2z)^3 + (3x^2)^2y^6z^3$	2. $(3m - 2n + 5z) + (8m + 3n - 7z)$
3. $3p^2(4p^2 - 8p + 6)$	4. (6 <i>a</i> + 2 <i>b</i>)(2 <i>a</i> - 3 <i>b</i>)
Factor, if possible.	
5. $4m^2 + 9n^2$	6. $a^2 - 2a - 99$
7. $12c^2 + 13c - 35$	8. $2m^2 - 10mn + 12n^2$

Identify each polynomial equation as quadratic, linear, or neither.

9. $3^2x + 4x + 7 = 0$

10. $3a + 2 = 5a^2$

© 2003 BestQuest

Module 13 Lesson 2

Graphing Calculator Problem

Solve $3x^2 - 10 = 65$ by graphing its associated quadratic function on a graphing calculator.

- **1.** Change the equation such that it is in the form $y = ax^2 + bx + c$, where y = 0. In this case, subtract 65 from both sides of the equation. The equation becomes $3x^2 75 = 0$. The associated quadratic function is $y = 3x^2 75$. To enter this into the calculator, press Y = and enter function $3x^2 75$ into $Y_1 =$. To enter x^2 , press x_{16} and x^2 . To enter "-75," press (-), (-), and (-).
- 2. Press GRAPH.
- 3. To solve the equation, find the x-intercepts of the graph. This is where the graph crosses the x-axis, and y = 0. When y = 0, we get the original equation with which we started. Use the CALC menu to find the x-intercept. Press 2 and then CALC. Use the down arrow to select 2:zero and then, press ENTER. Left Bound? will appear in the lower left-hand corner of the screen. Use the arrow keys to move the cursor to the left of what appears to be the first x-intercept, just above the x-axis. Press ENTER. Right Bound? will appear in the lower left-hand corner of the screen. Use the arrow keys to move the first x-intercept, just above the screen. Use the arrow keys to move the cursor to the right of what appears to be the first x-intercept, just below the x-axis. Press ENTER. Guess? will appear in the lower left-hand corner of the screen. The x and y values for the first root, or x-intercept, appear in the lower left-hand corner of the screen. The value of x in this case will be -5. Write this value on a piece of paper.
- **4.** Repeat Step 3 to identify the value of the other root. Use the arrow keys to move the cursor just to the left and just to the right of the second x-intercept. The value of *x* in this case will be five.

The roots are $\{5, -5\}$.

Solve by graphing on a graphing calculator. If needed, round answers to the nearest hundredth.

1. $x^2 = 16$

2. $-2x^2 = 14$

3. $2(x + 2)^2 + 25 = 25$

4. $3(x - 1)^2 - 1 = 38$

© 2003 BestQuest

Module 13 Lesson 2

 \oplus

Œ

DIGITAL