Module 13 Solving Quadratic Equations of One Variable
Lesson 2 Solving Quadratic Equations by Evaluating Square Roots

$\overline{\text { DATE }}$

practice

Solve by evaluating square roots.

$$
\text { 1. } x^{2}=81
$$

3. $x^{2}=441$
4. $3 x^{2}=75$
5. $-2 x^{2}=-72$
6. $2 x^{2}-4=28$
7. $(x+4)^{2}=81$
8. $(x+1)^{2}=49$
9. $(x+4)^{2}=11$
10. $2(x-3)^{2}+7=135$
11. $3(x-6)^{2}-5=22$
12. $2(x+3)^{2}-2=60$
\qquad

Journal

1. Give one example each of quadratic equations which have zero, one, and two roots.
2. Sonya says that the solutions to $(x-2)^{2}=16$ are 6 and -6 . Maggie says the solutions are 6 and -2 . Which girl is correct? Explain.
3. Describe how to solve $4(x-2)^{2}+2=102$.
4. Lewis solved the equation $x^{2}+9=0$ and found the solutions 3 and -3 . Where did he make a mistake?
5. Describe the general process used to solve a quadratic equation by evaluating square roots.

Cumulative Review

Simplify.

1. $2 x^{4}\left(y^{2} z\right)^{3}+\left(3 x^{2}\right)^{2} y^{6} z^{3}$
2. $(3 m-2 n+5 z)+(8 m+3 n-7 z)$
3. $3 p^{2}\left(4 p^{2}-8 p+6\right)$
4. $(6 a+2 b)(2 a-3 b)$

Factor, if possible.

5. $4 m^{2}+9 n^{2}$
6. $a^{2}-2 a-99$
7. $12 c^{2}+13 c-35$
8. $2 m^{2}-10 m n+12 n^{2}$

Identify each polynomial equation as quadratic, linear, or neither.
9. $3^{2} x+4 x+7=0$
10. $3 a+2=5 a^{2}$

Graphing Calculator Problem

Solve $3 x^{2}-10=65$ by graphing its associated quadratic function on a graphing calculator.

1. Change the equation such that it is in the form $y=a x^{2}+b x+c$, where $y=0$. In this case, subtract 65 from both sides of the equation. The equation becomes $3 x^{2}-75=0$. The associated quadratic function is $y=3 x^{2}-75$. To enter this into the calculator, press \circledast and enter function $3 x^{2}-75$ into $Y_{1}=$. To enter x^{2}, press $\times \times, \theta_{0}$ and x^{2}. To enter "-75," press $-7,7$, and 5 .
2. Press GRAPH.
3. To solve the equation, find the x-intercepts of the graph. This is where the graph crosses the x-axis, and $y=0$. When $y=0$, we get the original equation with which we started. Use the CALC menu to find the x-intercept. Press 2 2nd and then CALC. Use the down arrow to select 2:zero and then, press ENTER. Left Bound? will appear in the lower left-hand corner of the screen. Use the arrow keys to move the cursor to the left of what appears to be the first x-intercept, just above the x-axis. Press ENTER. Right Bound? will appear in the lower left-hand corner of the screen. Use the arrow keys to move the cursor to the right of what appears to be the first x-intercept, just below the x-axis. Press ENTER. Guess? will appear in the lower left-hand corner of the screen. Press ENTER. The x and y values for the first root, or x-intercept, appear in the lower left-hand corner of the screen. The value of x in this case will be -5 . Write this value on a piece of paper.
4. Repeat Step 3 to identify the value of the other root. Use the arrow keys to move the cursor just to the left and just to the right of the second x-intercept. The value of x in this case will be five.
The roots are $\{5,-5\}$.

Solve by graphing on a graphing calculator. If needed, round answers to the nearest hundredth.

1. $x^{2}=16$
2. $2(x+2)^{2}+25=25$
© 2003 BestQuest
3. $-2 x^{2}=14$
4. $3(x-1)^{2}-1=38$
