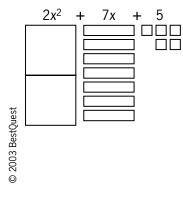
|                  | K_61519 8/12/03 3:37 PM Page 111 (Black pl                          | $-\psi$                     | DIGITAL              |
|------------------|---------------------------------------------------------------------|-----------------------------|----------------------|
|                  |                                                                     |                             |                      |
|                  | NAME                                                                | DATE                        |                      |
|                  | <b>Module 12</b> Simplifying Algebraic Exp<br>Factoring Polynomials | pressions by                | pendent              |
|                  | <b>Lesson 5</b> Factoring $ax^2 + bx + c$                           | prac                        | pendent<br>ctice     |
|                  |                                                                     |                             | Manage and a         |
|                  | Factor.                                                             |                             |                      |
|                  | <b>1.</b> $2x^2 + 9x + 7$                                           | <b>2.</b> $3x^2 + 8x + 5$   |                      |
|                  | <b>3.</b> $5x^2 + 11x + 2$                                          | <b>4.</b> $7x^2 + 2x + 5$   |                      |
|                  | <b>5.</b> $4x^2 + 13x + 3$                                          | <b>6.</b> $7x^2 - 4x - 3$   |                      |
|                  | <b>7.</b> $11x^2 - 6x - 5$                                          | <b>8.</b> $5x^2 - 14x - 3$  |                      |
|                  | <b>9.</b> $13x^2 - 2x - 15$                                         | <b>10.</b> $5x^2 + 2x - 7$  |                      |
|                  | <b>11.</b> $17x^2 + 33x - 2$                                        | <b>12.</b> $3x^2 - 10x + 3$ |                      |
|                  | <b>13.</b> $5x^2 - 12x + 7$                                         | <b>14.</b> $2x^2 + x - 3$   |                      |
|                  | <b>15.</b> $8x^2 + 2x - 15$                                         | <b>16.</b> $5x^2 + 7x - 24$ |                      |
|                  | <b>17.</b> $9x^2 + 24x + 16$                                        | <b>18.</b> $2x^2 - x - 3$   |                      |
|                  | <b>19.</b> $12x^2 - 23x + 5$                                        | <b>20.</b> $7x^2 - 16x + 9$ |                      |
| © 2003 BestOuest |                                                                     |                             |                      |
| e                | Module 12 Lesson 5                                                  | 111                         | Independent Practice |

 $-\phi$ 

## DIGITAL



- **1.** Aaron insists that the factored form of  $4x^2 12x + 5$  is (2x + 1)(2x + 5). Explain what Aaron did correctly, but why his factorization is incorrect. What would the trinomial need to be for his factorization to be correct?
- **2.** Create a trinomial of the form  $ax^2 + bx + c$ , where b > 0 and c > 0, and *a* and *c* are prime. Explain each step for factoring it.
- **3.** Bruce thinks the only way to factor  $6x^2 + 11x + 4$  is to use the traditional method of finding the factor pairs of the first term, to separate the pairs into two binomials, and then, to use *guess-and-check* with factor pairs of the third term to see what works. Explain to Bruce another way to factor this trinomial.
- **4.** Can a trinomial whose first term is negative be factored into a product of two binomials? Explain your answer using an example.


### **Cumulative Review**

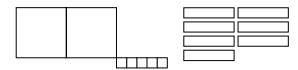
| Simplify.                         |                                           |
|-----------------------------------|-------------------------------------------|
| <b>1.</b> 8 <i>f</i> + 20         | <b>2.</b> $15m^2 - 15m - 40$              |
| <b>3.</b> $7s^2t + 3s - 10t$      | <b>4.</b> $18a^3b^4 + 9a^2b^3 - 12a^2b^2$ |
| <b>5.</b> $gh - 4g + 2h - 8$      | <b>6.</b> $xz + 6x - yz - 6y$             |
| <b>7.</b> $16r^2 - 12r - 12r + 9$ | <b>8.</b> $9m^2 - 16n^2$                  |
| <b>9.</b> $x^2 + 21x + 38$        | <b>10.</b> $x^2 + 15x - 54$               |

## Manipulatives

Use algebra tiles to factor.  $2x^2 + 7x + 5$  with tiles. Begin by modeling the trinomial.

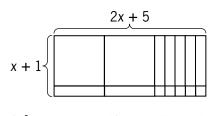
Figure 1




Module 12 Lesson 5

Independent Practice

## DIGITAL


Put the x<sup>2</sup>-squares in a row and then arrange the 1's tiles, so they form a rectangle. Because five is a prime number, the only rectangle that can be formed is a  $1 \times 5$  rectangle. Now arrange the tiles so the lower, right corner of the x<sup>2</sup>'s rectangle and the upper left corner of the 1's rectangle are touching.

#### Figure 2



Finally, fill in the x-rectangles above and to the left of the 1-squares to form a rectangle. All tiles should be used in forming a rectangle. If there are too few x-rectangles or if there are x-rectangles left over, try adding zero pairs, or start over with a different configuration of 1's tiles.

#### Figure 3



 $2x^2 + 7x + 5 = (2x + 5)(x + 1)$ 

#### Use algebra tiles to simplify the following:

**1.** 
$$6x^2 + 7x + 2$$
 \_\_\_\_\_

**2.**  $5x^2 - 8x - 4$  \_\_\_\_\_

**3.**  $4x^2 - 2x - 6$  \_\_\_\_\_

**4.**  $4x^2 - 8x - 12$  \_\_\_\_\_

© 2003 BestQuest

Module 12 Lesson 5

Independent Practice

 $\oplus$ 

# DIGITAL