	-φ-	DIGITAL
NAME	DATE	100000
Module 12 Simplifying Algebraic Exp	ressions by	nendent
Lesson 4 Factoring Polynomials Factoring $x^2 + bx + c$	prac	tice
	Brade	
Factor, if possible.		dia
1. $x^2 + 4x + 3$	2. $u^2 + 9u + 18$	
3. $a^2 + 11a + 28$	4. $b^2 + 11b + 24$	
5. $p^2 + 7p + 14$	6. $m^2 + 9m + 20$	
7. $k^2 - 5k + 6$	8. $d^2 - 7d + 12$	
9. $n^2 - 9n + 14$	10. $r^2 - 8r + 16$	
11. $y^2 - 13y + 36$	12. $z^2 - 10z + 24$	
13. $h^2 - 2h - 8$	14. $v^2 - v - 12$	
15. $w^2 - 4w - 3$	16. $q^2 - 2q - 48$	
17. $a^2 - 11a - 42$	18. <i>m</i> ² – 12 <i>m</i> – 64	
19. $f^2 + 4f - 5$	20. $c^2 + 7c - 18$	
JestQuest		
© 2003 F		
	101	

 $-\phi$

21. $n^2 + 5n - 14$

22. t² + 5t - 24

23. $g^2 + 8g - 20$

24. $s^2 + s - 42$

	さった	80	
Journal	Contrati	and Los	orienter and a

- **1.** Explain why the trinomial $z^2 7z 10$ cannot be simplified into two binomial factors.
- **2.** Nicholas says the factored form of $x^2 3x 18$ is (x + 6)(x 3). Explain why his solution is incorrect. What would the trinomial need to be for his solution to be correct?
- **3.** If both the second and third terms in a trinomial are negative, what must be true about its binomial factors? Explain.
- **4.** Create a trinomial of the form $x^2 + bx + c$, where b > 0 and c > 0, which can be factored. Explain each step for factoring it.
- 5. Explain how factoring a trinomial is related to the FOIL Method.

Cumulative Review

Factor, if possible.

1. 3b + 9	2. $12z^2 - 18z - 6$
3. $9c^2d + 3cd^2 - 15c$	4. $p(m + n) + 2(m + n)$
5. $4r^2 - 2rq - 2rq + q^2$	6. $2s^2 + 3st - 2st - 3t^2$
7. 49 <i>x</i> ² – 16	8. 25 <i>n</i> ² - 4
Factor using algebra tiles.	
9. <i>z</i> ² - 9	10. $9b^2 - 1$

© 2003 BestQuest

Module 12 Lesson 4

Independent Practice

DIGITAL

Manipulatives

Algebra tiles can be used to factor trinomials. Use algebra tiles to factor $x^2 + 7x + 10$. Begin by modeling the trinomial.

Then, arrange the 1's tiles so they form a rectangle. These could be arranged as a 2×5 rectangle or a 1×10 rectangle. Now, arrange the tiles so the lower right corner of the x²-tile and the upper left corner of the 1's tiles are touching.

Finally, fill in the x-rectangles above and to the left of the 1-squares to form a rectangle. All tiles should be used in forming a rectangle. If there are too few x-rectangles or if there are x-rectangles left over, start over with a different configuration of 1's tiles or try adding zero pairs.

 $x^{2} + 7x + 10 = (x + 2)(x + 5)$

Use algebra tiles to simplify the following:

1. $x^2 + 2x - 3$

2. $x^2 - 9x + 18$

3. *x*² − 3*x* − 28

4. $x^2 - 10x - 24$

Module 12 Lesson 4

Independent Practice

 \oplus

DIGITAL