NAME

Module 12 Simplifying Algebraic Expressions by Factoring Polynomials
Lesson 4 Factoring $x^{2}+b x+c$

DATE
practice

Factor, if possible.

1. $x^{2}+4 x+3$
2. $u^{2}+9 u+18$
3. $a^{2}+11 a+28$
4. $b^{2}+11 b+24$
5. $p^{2}+7 p+14$
6. $m^{2}+9 m+20$
\qquad
7. $k^{2}-5 k+6$
8. $n^{2}-9 n+14$
9. $y^{2}-13 y+36$
10. $z^{2}-10 z+24$
\qquad
11. $h^{2}-2 h-8$
12. $v^{2}-v-12$
\qquad
13. $w^{2}-4 w-3$
14. $q^{2}-2 q-48$
15. $m^{2}-12 m-64$
16. $a^{2}-11 a-42$
17. $f^{2}+4 f-5$
18. $c^{2}+7 c-18$

19. $n^{2}+5 n-14$
20. $t^{2}+5 t-24$
21. $g^{2}+8 g-20$
\qquad
22. $s^{2}+s-42$

Journal

1. Explain why the trinomial $z^{2}-7 z-10$ cannot be simplified into two binomial factors.
2. Nicholas says the factored form of $x^{2}-3 x-18$ is $(x+6)(x-3)$. Explain why his solution is incorrect. What would the trinomial need to be for his solution to be correct?
3. If both the second and third terms in a trinomial are negative, what must be true about its binomial factors? Explain.
4. Create a trinomial of the form $x^{2}+b x+c$, where $b>0$ and $c>0$, which can be factored. Explain each step for factoring it.
5. Explain how factoring a trinomial is related to the FOIL Method.

Cumulative Review

Factor, if possible.

1. $3 b+9$
2. $12 z^{2}-18 z-6$
3. $9 c^{2} d+3 c d^{2}-15 c$
4. $4 r^{2}-2 r q-2 r q+q^{2}$
5. $49 x^{2}-16$

Factor using algebra tiles.

9. $z^{2}-9$
\qquad
10. $p(m+n)+2(m+n)$
11. $2 s^{2}+3 s t-2 s t-3 t^{2}$
12. $25 n^{2}-4$
13. $9 b^{2}-1$

Manipulatives

Algebra tiles can be used to factor trinomials. Use algebra tiles to factor $x^{2}+7 x+10$. Begin by modeling the trinomial.

Then, arrange the 1's tiles so they form a rectangle. These could be arranged as a 2×5 rectangle or a 1×10 rectangle. Now, arrange the tiles so the lower right corner of the x^{2}-tile and the upper left corner of the 1's tiles are touching.

Finally, fill in the x-rectangles above and to the left of the 1-squares to form a rectangle. All tiles should be used in forming a rectangle. If there are too few x-rectangles or if there are x-rectangles left over, start over with a different configuration of 1's tiles or try adding zero pairs.

$x^{2}+7 x+10=(x+2)(x+5)$
Use algebra tiles to simplify the following:

1. $x^{2}+2 x-3$
2. $x^{2}-9 x+18$
3. $x^{2}-3 x-28$
4. $x^{2}-10 x-24$
