NAME

Module 12 Simplifying Algebraic Expressions by Factoring Polynomials
Lesson 3 Factoring The Difference of Two Squares

$\overline{\text { DATE }}$

Factor completely, if possible.

1. $c^{2}-36$
2. $g^{2}-4$
3. $w^{2}+9$
4. $j^{2}-9$
5. $9-m^{2}$
6. $x^{2}-100$
7. $b^{4}-25$
8. $f^{5}-16$
\qquad
9. $81-j^{8}$
10. $c^{2}-d^{2}$
11. $a^{6}-121 b^{4}$
12. $169-196 z^{2}$
13. $64 u^{10}-225 v^{12}$
14. $441 x^{6}-256 y^{14}$
15. $16 x^{8}-81 y^{4}$

16. $a^{8}-c^{4}$
17. $m^{16}-n^{8}$
18. $16 c^{2} d^{4}-25$
19. $4-49 s^{4} t^{2}$

Journal

1. Margo missed class the day the teacher taught the class to factor a difference of two squares. Explain the process used to factor a difference of two squares to her.
2. Describe a method to identify a polynomial as a difference of two squares.
3. Jimmy says that $16 a^{4}-81 b^{8}$ is factored completely as $\left(4 a^{2}+9 b^{4}\right)\left(4 a^{2}-9 b^{4}\right)$. Cindy says that he is incorrect. Who is correct? Explain.
4. Explain how to use factoring the difference of two squares to find the value of $51^{2}-49^{2}$.
5. Explain how to check the answer when factoring the difference of two squares.

Cumulative Review

Simplify.

1. $\left(f^{2}-2 f+6\right)+\left(8 f^{2}+4 f-8\right)$
2. $2 x y\left(x^{2}+3 x+7\right)$
3. $(c+2)\left(c^{2}-5 c+4\right)$

Factor, if possible.

7. $8 y^{12}+20 y^{4}$
8. $2 a b-12 a+3 b-18$
© 2003 BestQuest

Manipulatives

Use algebra tiles to factor $x^{2}-4$.
Model $x^{2}-4$ with tiles. Use one positive x-squared tile and four negative one tiles.

Arrange the tiles as two squares with their corners touching.

Fill in the extra space to make a rectangle by adding two zero pairs.

The length is $x+2$. The width is $x-2$.
The answer is $(x+2)(x-2)$.

Factor using algebra tiles.

1. $x^{2}-36$
2. $m^{2}-25$
3. $4 a^{2}-9$
4. $j^{2}-1$
