NAME			DATE
Module 11	Simplifying Algebraic Expression with Polynomials	ns	independent
Lesson 7	Dividing Polynomials Using Long Division	B	practice
			A second
Use long divis equal to zero.	ion to divide these polynomials. Ass	ume tha	at no divisor is
1. $x - 2)3x^2$	-7x + 2	2. 2	$2c + 3)2c^2 + 7c + 6$
3. $5y + 2\overline{)5y^2}$	$x^{2} + 7y + 9$	4. 4	$4a - 7)\overline{4a^2 + 5a - 24}$
5. $(x^2 + 5x + 5x)$	$(-4) \div (x + 4)$	6. ($(a^2 - 9a + 14) \div (a - 2)$
7. $(y^2 + 9y -$	12) ÷ (y – 1)	8. ($(b^2 + 4b - 9) \div (b + 6)$
9 . (–8n + 3n ²	(n-2)	10. ($(21 - 26c + 8c^2) \div (2c - 3)$
11. (6 + m ² +	6m) ÷ (m + 5)	12. ($(12s^2 + 23s + 13) \div (2 + 3s)$
13. (6d ³ – 11c	$d^2 - 7d + 2) \div (3d + 2)$	14. ($(4x^3 + 20x^2 + 3x - 55) \div (2x + 5)$
15. (x ² – 64) ÷	- (x – 8)	16 .((a ² – 25) ÷ (5 + a)
17. (<i>a</i> ³ – 8) ÷	(a – 2)	18. ($(8c^3 + 27) \div (2c + 3)$
19. (<i>y</i> ³ + 125)) ÷ (y – 2)	20 .($(18r^4 + 9r^3 + 3r^2) \div (3r^2 + 1)$
		-	
Module 11 Lesso	n 7 5	59	Independent Practice

 \oplus

DIGITAL

- **1.** In the equation $(r^2 5r + 6) \div (r 3) = r 2$, why is it important to know that $r \neq 3$?
- **2.** Why is it important to arrange both the dividend and the divisor in order of decreasing degree of the variable for long division?
- **3.** Explain how to rewrite the dividend in the following problem in order to divide by using long division: $(27a^3 8) \div (3a 2)$. Why would you do this?
- **4.** Explain the process used to check the problem below to make sure the answer is correct.

$$4x + 3 + \frac{4}{3x + 1}$$

 $3x + 1)12x^2 + 13x + 7$

5. Is the answer correct in "Journal Question 4"? Show all work to justify your answer.

Cumulative Review

1. Simplify: $8^5 \cdot 8^{-3}$.

2. Write 1.98×10^8 in standard form.

3. Write 0.004 m in scientific notation.

5. Multiply: $3x^4 \cdot -4x^2$

4. Add: $(a^3 - 2a - 1) + (3a + 7)$.

6. Multiply: $4d(3d^2 - 6d)$.

- **7.** Multiply: $(2r + 4)^2$.
- **9.** Simplify: $\frac{15x^3yz^6}{-3x^2z^3}$.

8. Multiply: $(3y - 5)(2y^2 + 7y - 4)$.

10. Simplify: $\frac{-24g^9 - 4g^5 + 32g^3}{8g^2}.$

© 2003 BestQuest

Module 11 Lesson 7