NAME

Module 11 Simplifying Algebraic Expressions with Polynomials
Lesson 4 Multiplying Monomials and Binomials

DATE

Find the product.

$$
\text { 1. } 4 h \cdot 2 h
$$

3. $\frac{2}{3} w \cdot\left(-9 w^{3}\right)$
4. $\left(4 m^{2} n^{3}\right)\left(-5 m^{3}\right)$
5. $-4 g^{3} h^{2}\left(4 g h^{2}-g^{2} h^{3}\right)$
6. $(w-8)(w+3)$
7. $(g+7)^{2}$
\qquad
8. $\left(-2 t^{3}\right)\left(-5 t^{2}\right)$
9. $3 x^{2} y \cdot 2 x y^{3}$
10. $5 b\left(b^{3}-6 b\right)$
11. $(x+4)(x+6)$
12. $(r-11)(r+11)$
13. $(b-6)^{2}$

Journal

1. A friend missed class today and wants to know how to multiply two monomials. Explain in words how to find the product $\left(-4 x^{2}\right)\left(-6 x^{4}\right)$.
2. What is the product $(x+a)^{2}$? Write a rule for finding the square of a binomial that contains an addition symbol and use the rule to find the product $(x+3)^{2}$.
3. What is the product $(x-a)^{2}$? Write a rule for finding the square of a binomial that contains a subtraction symbol and use the rule to find the product $(x-6)^{2}$.
4. A student claimed the simplified product of any two binomials is a trinomial. Is the student correct? Give an example to support this answer.
5. Find the product $(x+5)(x+4)$, showing each step. How are the constants 5 and 4 in the binomial factors related to the coefficient of the middle term in the product? How are the constants 5 and 4 in the binomial factors related to the last term in the product? If $(x+a)(x+b)=x^{2}+c x+d$, how are a, b, and c related? How are a, b, and d related?

Cumulative Review

Simplify.

1. $3 x^{2}-5 x^{2}$
2. $5 m+2 m^{2}-m$
3. $2(x+3)-5 x$
4. $6 x-4(x+3)$
5. $3 h-4 h^{2}+h^{3}-7 h+5 h^{2}$
6. $4-9 b+3$
7. $3(x-4)+1$
8. $w^{3} \cdot w^{5} \cdot w$
9. $3(b+1)+4(2-b)$
10. $8 x^{2} y-3 x y+2 x^{2} y-4 x y^{2}-2 x y$

Manipulatives

Use algebra tiles to represent the product $(2 x-3)(x+1)$.

1. Represent the factor $2 x-3$ to the left of the vertical gridline and represent the factor $x+1$ above the horizontal gridline. See Figure 1. Solid figures represent negatives and hollow figures represent positives. A small square represents the number one, a rectangle represents x, and a large square represents x^{2}.
2. The factor $2 x-3$ is represented by two x-rectangles and three small negative one-squares. The factor $x+1$ is represented by one x-rectangle and one small one-square.
3. The product is represented below and to the right of the gridlines. An x-rectangle times an x-rectangle is a large x^{2}-square. An x-rectangle times a small negative one-square equals a -x-rectangle. A small onesquare times an x-rectangle equals an x-rectangle. A small one-square times a small negative one-square equals a small negative one-square. See Figure 2.
4. Combine small squares with small squares, rectangles with rectangles, and large squares with large squares (combine like terms). There are two x^{2}-squares: $x^{2}+x^{2}=2 x^{2}$. There are two x-rectangles and three $-x$-rectangles. Pair a positive rectangle with a negative rectangle (this is called a zero pair because their sum is zero) and remove that pair of tiles. Then, remove another positive rectangle and negative rectangle (another zero pair). The only remaining rectangle is one $-x$-rectangle: $2 x-3 x=-x$. There are three small negative one-squares: $-1-1-1=-3$. After combining all like terms, you have the simplified product: $2 x^{2}-x-3$. See Figure 3 .

Figure 1

Figure 2

Figure 3

Use algebra tiles to find the following products.

1. $3 x(x+3)$
2. $(x+1)(x+4)$
\qquad
