NAME

Module 11 Simplifying Algebraic Expressions with Polynomials

Lesson 1 Applying Rules of Exponents

DATE

Simplify.

1. $2^{4} \cdot 2^{6}$ \qquad
2. $3^{2} \cdot 2^{3}$ \qquad
3. $x^{2} y^{0} z^{-4}$ \qquad
4. $(a b)^{4}$ \qquad
5. $\left(-2 a^{4} b^{3}\right)^{2}\left(a^{5} b\right)$ \qquad
6. $\left(0.4 x^{2} y^{4}\right)^{2}$ \qquad
7. $8 a\left(b^{4} c^{5}\right)^{3}$ \qquad
8. $\frac{2^{5}}{2^{3}}$ \qquad
9. $\left(\frac{x}{2}\right)^{-3}$ \qquad
10. $\frac{2 x^{3} y}{4 x^{2} y^{3}}$ \qquad
11. $\left(\frac{8^{-2} x^{3} y^{4}}{z^{10}}\right)^{0}$ \qquad
12. $\frac{\left(a^{4} b^{5} c\right)^{2}}{\left(a b^{2}\right)^{-2}}$ \qquad
13. $3^{-3} \cdot 3^{6}$ \qquad
14. $\left(x^{2} y^{3}\right)\left(x^{4} y^{6}\right)$ \qquad
15. $r^{-3} s^{5}$ \qquad
16. $\left(2 c^{2} d\right)^{3}$ \qquad
17. $\left(-\frac{3}{4} c\right)^{2}$ \qquad
18. $\left(\frac{3}{4} x^{2} y^{-2}\right)\left(\frac{2}{3} x^{5} y^{8}\right)^{3}$
19. $\left(5^{2} c^{2} d^{3}\right)^{-2}$ \qquad
20. $\frac{3^{6}}{3^{8}}$
21. $\frac{x^{-3}}{x^{5}}$
22. $\frac{15 x^{2} y^{3} z^{5}}{18 x y^{-2} z^{-4}}$ \qquad
23. $\frac{3^{4} x^{2} y^{-4}}{3^{2} x^{3} y^{-5}}$
24. $\frac{\left(3 m^{-3} n^{2} p^{4}\right)^{-2}}{\left.2 m^{4} n^{-3} p\right)^{-1}}$ \qquad

Journal

1. Meko says that $2^{3} \cdot 3^{4}$ is 6^{7}. Show Meko his mistake and help him find the correct way to simplify this expression.
2. Nora does not believe it makes sense that a^{0} is one. Use the following pattern to convince her: $10^{4}=10,000,10^{3}=1,000,10^{2}=100, \ldots$
3. Give an example to show that $\left(x^{a}\right)^{b}=x^{a b}$.
4. Explain the method used for multiplying expressions involving exponents in your own words.
5. Explain the method used for dividing expressions involving exponents in your own words.

Cumulative Review

Solve each equation or system of equations.

1. $3 x-4=5$ \qquad 2. $4 a-6=12$
2. $2(d-2)=18$ \qquad 4. $4 z+18-5 z=2 z+21$
3. $\begin{array}{r}x=2 \\ 2 x+y=7\end{array}$ \qquad 6. $\begin{aligned} y & =4 x \\ x-y & =6\end{aligned}$
4. $x-2 y=15$
$3 x+2 y=13$
5. $3 x+y=6$ $5 x-y=-2$ \qquad
6. Joe makes $\$ 8.25$ per hour mowing lawns. This week he made $\$ 198$. How many hours did he work? \qquad
