NAME

 γ_{ij}

					10000
Module 10 Lesson 1	Solving Systems of Linear Equations and Inequalities Solving Systems of Linear Equations by Graphing			independen practice	
Determine w	hether the given po	oint is a solution	n to the system.		
1 . (1, 1)	$\begin{cases} x = 1 \\ y = 1 \end{cases}$	2 . (–2, 1)	$\begin{cases} x + y = -1 \\ y = 5x + 11 \end{cases}$	3. (–1, 6)	$\begin{cases} x - 2y = -13 \\ y = 2x + 17 \end{cases}$
4 . (4, -2)	$\begin{cases} 5x - 4y = 28\\ y = x - 4 \end{cases}$	5 . (5, -1)	$\begin{cases} 3x - 2y = 17\\ 2x + 7y = 3 \end{cases}$	6 . (0, 0)	$\begin{cases} y = x \\ y = -x \end{cases}$
7 . (–3, 0)	$\begin{cases} 7x - 5y = 31\\ 2x - 3y = 19 \end{cases}$	8 . (9, -1)	$\begin{cases} y = -3x + 2\\ y = 3x - 7 \end{cases}$	9 . (4, 5)	$\begin{cases} 6x - 3y = 9\\ 11x + 2y = 54 \end{cases}$

Solve each system by graphing.

10. $\begin{cases} y = 3 \\ x = -8 \end{cases}$

Module 10 Lesson 1

11.
$$\begin{cases} y = x - 2 \\ y = \frac{1}{2}x + 1 \end{cases}$$

y

DATE

Independent Practice

 $\rightarrow x$

(Black plate)

DIGITAL

 $\rightarrow x$

13.
$$\begin{cases} y = -\frac{1}{3}x - 4 \\ y = -x + 2 \end{cases}$$

y

14. $\begin{cases} 3x + 2y = 4 \\ 6x + 4y = 20 \end{cases}$

Module 10 Lesson 1

Independent Practice

(Black plate)

DIGITAL

- **1.** What are the advantages and disadvantages of using the graphing method to solve systems of equations?
- 2. Explain when a system of equations has no solution.
- Is it possible for a system of equations to have *exactly* two solutions? Why or why not?
- 4. Explain how to graph a line from an equation written in standard form.
- **5.** Patti says the point (2, 3) is the solution to this system of equations $\begin{cases} y = 4x 5 \\ 12x 3y = 15 \end{cases}$ Daniel said the solution is (-1, -9). Who is correct and why?

Cumulative Review

Solve each equation for the indicated variable.

 1. 3x + 2y = 6; y 2. 2x - 5y = 30; y

 3. P = 2l + 2w; l 4. t + 3r = 6; r

 5. $C = \pi d; d$ 6. 4c + 2b = 10; c

 Module 10 Lesson 1

DIGITAL

7. $\frac{3}{2}$ + 4y = 9; y

8. *A* = *lw*; *w*

9. $A = \frac{1}{2}(b_1 + b_2)h; b_2$

10. $A = \frac{1}{2}bh; b$

Calculator Problems

Solve
$$\begin{cases} y = x + 4 \\ y = -x + 3 \end{cases}$$

To solve a system of equations with a graphing calculator:

- **1.** Enter the functions into $Y_1 =$ and $Y_2 =$.
- 2. From the CALC menu, select 5:INTERSECT. The graphs of Y₁ and Y₂ are displayed with First curve? In the bottom-left corner.
- 3. Press ENTER. Second curve? is displayed in the bottom-left corner.
- 4. Press ENTER. Guess? is displayed in the bottom-left corner.
- **5.** Press the right or left arrow keys to move the cursor to the point that is your guess as the point of intersection.
- **6.** Press **ENTER**. The cursor is on the solution. **Intersection** and the *x* and *y*-coordinates of the intersection is displayed in the bottom-left corner.

Solve.

1.
$$\begin{cases} y = x + 1 \\ y = -2x \end{cases}$$
 2. $\begin{cases} y = -x - 2 \\ y = x + 2 \end{cases}$
 3. $\begin{cases} y = 2x + 1 \\ y = -3x - 5 \end{cases}$

 4. $\begin{cases} y = 9 - 2x \\ y = \frac{1}{3}x - 5 \end{cases}$
 5. $\begin{cases} y = x + 4 \\ y = 9x \end{cases}$
 6. $\begin{cases} x = y + 7 \\ y = 5 - x \end{cases}$

© 2003 BestQuest

Module 10 Lesson 1

Independent Practice