NAME

DATE

Module 1 Getting Ready for Algebra
Lesson 4 Simplifying Expressions with
Exponents and Roots

independent practice

Simplify.

1. 8³

2. 3⁴

(Black plate)

3. 3⁰

4. $\left(\frac{3}{7}\right)^2$

5. $\left(\frac{2}{3}\right)^4$

6. 21¹

7. 11²

8. 0⁶

9. (–2)³

10. $\left(-\frac{3}{4}\right)^3$

11. (–2)⁷

12. (-1)⁰

13. (-6)²

14. $\left(-\frac{1}{6}\right)^3$

15. $\sqrt{81}$

16. $\sqrt{\frac{2}{3}}$

17. $\sqrt[3]{729}$

18.

19. $\sqrt[3]{-125}$

20. $\sqrt{900}$

Journal

- **1.** A student wrote the rule: $1^n = 1$, where n is any natural number. Is the student correct? Can you think of any changes that might be made to her rule? Explain.
- **2.** Students often forget the "code" for simplifying exponential expressions and say that $b^n = b \cdot n$. Is there ever a case in which $b^n = b \cdot n$? Explain.
- **3.** In this lesson, you learned the rule $b^0 = 1$. Write a rule for b^1 . Write a rule for 0^n . Explain each rule.
- 4. How can you determine whether a cube root is negative or positive? Explain.
- **5.** In the expression $(-2)^4$, why are parentheses included? What is the value of -2^4 ?

Cumulative Review

Complete the table by placing a check mark in each column that applies to the given number.

	Real Number	Rational Number	Integer	Whole Number	Natural Number
1 . –3					
2 . 0					
3. 5.6					
4. 5					
5 . $\frac{2}{5}$					

Simplify.

10. $\frac{1}{8} \cdot \frac{2}{3} =$ _____

9.
$$\left(\frac{2}{5}\right) - \left(-\frac{1}{2}\right) =$$