## NAME

Module 1 Getting Ready for Algebra
Lesson 1 Defining Sets and Real Numbers

## $\overline{\text { DATE }}$

independent practice

Identify all the sets of numbers to which each of the following belong.

1. -7 $\qquad$ 2. 0 $\qquad$
2. $3 \frac{2}{5}$ $\qquad$
3. $\frac{\pi}{3}$ $\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

If possible, give an example of a number that is $\qquad$
5. an integer but not a natural number. $\qquad$
6. both a natural number and an irrational number. $\qquad$
7. both an irrational number and a real number. $\qquad$
8. both an integer and an irrational number.
9. an integer but not a rational number.
10. a rational number but not a whole number. $\qquad$

Draw a Venn diagram to show the relationship between the following sets of numbers:
11. Irrational numbers and natural numbers
12. Rational numbers and whole numbers

Graph the numbers on the number line provided.
13. $0,2.5,-3,-\frac{2}{3},-\frac{3}{2}$, and $-\pi$
© 2003 BestQuest

16. $-2,1.75,-\frac{4}{5}, 3.1$, and $\pi$


## Determine whether each statement is true or false. If a statement is false, provide an example showing it is false.

17. The quotient of two non-zero integers is also an integer. $\qquad$
18. The sum of two rational numbers is also a rational number.
19. The product of two rational numbers is also a rational number. $\qquad$
20. The sum of two irrational numbers is also an irrational number. $\qquad$

To describe each of the following examples, identify the most reasonable set of numbers from which to choose.
21. Fahrenheit temperatures:
23. Number of children in a family:
25. Number of yards gained on a football play:
27. Average number of yards gained per carry:
29. A family's checking account balance:
22. The number of siblings someone has:
24. Celsius temperatures:
26. U.S. highway speed limits in mph:
28. Height of a plant in millimeters:
30. Length of your foot in centimeters:
$\qquad$

## Journal

1. In 25 words or less, explain how the set of whole numbers and the set of integers are similar and how they are different.
2. Give an example of a situation in which you would rather use decimal numbers for computation. Give an example of a situation in which you would rather use fractions for computation.
3. Explain what is meant by saying the set of rational numbers and the set of irrational numbers are disjoint sets.
4. Explain what you would say to your parent to show that the set of integers is a subset of the set of rational numbers.
5. Your parent says that natural numbers best describe weight, but a grocer says that rational numbers are best to describe weight. Explain why both answers can be correct.

## Calculator Problems

The set of real numbers contains the set of rational numbers and the set of irrational numbers. A square root can be either rational or irrational.

A square root is rational if its radicand is a perfect square. For example:
$\sqrt{9}$ is rational because 9 is a perfect square. $\sqrt{9}=\sqrt{3 \cdot 3}=\sqrt{3^{2}}=3$.
$\sqrt{\frac{9}{16}}$ is rational because $\frac{9}{16}$ is a perfect square. $\sqrt{\frac{9}{16}}=\sqrt{\frac{3 \cdot 3}{4 \cdot 4}}=\sqrt{\frac{3^{2}}{4^{2}}}=\frac{3}{4}$.
A square root is irrational if its radicand is not a perfect square. For example:
$\sqrt{7}$ is irrational because 7 is not a perfect square (there is no rational number that can be squared to get 7).
$\sqrt{\frac{11}{16}}$ is irrational because $\frac{11}{16}$ is not a perfect square (there is no rational number that can be squared to get $\frac{11}{16}$ ).

Use a calculator to find whole number or decimal representations for square roots. For example:

Rational square roots:
$\sqrt{9}=3$ (exact)
$\sqrt{\frac{9}{16}}=\frac{3}{4}=0.75$ (exact)
$\sqrt{\frac{16}{81}}=\frac{4}{9} \approx 0.4444$ (an approximation for a repeating decimal, rounded to the nearest ten thousandth)
$\sqrt{\frac{16}{121}}=\frac{4}{11} \approx 0.3636$ (an approximation for a repeating decimal, rounded to the nearest ten thousandth)

Irrational square roots:
$\sqrt{7} \approx 2.6458$ (an approximation for a nonrepeating, nonterminating decimal, rounded to the nearest ten thousandth)
$\sqrt{\frac{11}{16}} \approx 0.8292$ (an approximation for a nonrepeating, nonterminating decimal, rounded to the nearest ten thousandth)

Use a calculator to find a decimal representation for each of the following rational numbers. Round to the nearest ten thousandth if rounding is necessary.

1. $\sqrt{100}$
2. $\sqrt{\frac{1}{16}}$
3. $\sqrt{\frac{49}{121}}$
4. $\sqrt{169}$
5. $\sqrt{\frac{7}{7}}$

Use a calculator to find a decimal representation for each of the following irrational numbers. Round to the nearest ten thousandth if rounding is necessary.

1. $\sqrt{8}$
2. $\sqrt{\frac{9}{11}}$
3. $\sqrt{\frac{22}{21}}$
4. $\sqrt{51}$
5. $\sqrt{23.29}$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$

## Cumulative Review

## Simplify.

1. $23.3+5.79$
2. $17.41-2.93$
3. $10.1-3.28$
4. $2.5 \cdot 0.36$
5. $1.2 \div 0.03$
6. $3 \frac{4}{5}-2 \frac{1}{5}$
7. $2 \frac{1}{8}+3 \frac{3}{4}$
8. $3 \frac{1}{5}-1 \frac{3}{5}$
9. $1 \frac{3}{4} \div 3 \frac{1}{2}$
10. $1 \frac{3}{4} \cdot 1 \frac{1}{3}$
