NAME DATE

(Black plate)

Module 5 Solving Linear Inequalities of

One Variable

Solving Conjunction Inequalities Lesson 5

Lesson Objectives

- Solve and graph the solution sets to conjunctions.
- Use the notation a < x < b to show that x lies between a and b,

A compound inequality is two inequalities joined by the words

____ or ___

_____ consists of two statements joined by the word "and."

A conjunction is only true when _____

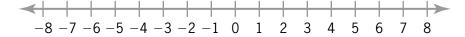
To solve a _______, find the solutions that

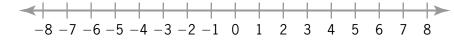
make both inequalities true.

To solve a conjunction inequality, find the ______ of the

solution sets of the individual inequalities.

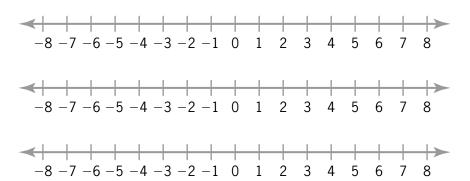
A conjunction has no solution if the graphs of the two inequalities have no

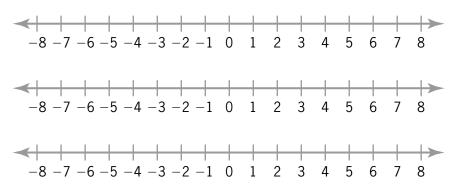

_____ or do not intersect.


The notation $0 < x \le 4$ shows that x lies _____ zero and four,

including ______, but not including ______.

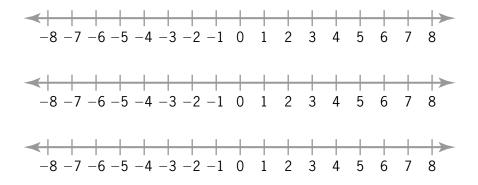
(1) Solve and graph. $x \ge 6$ and $x \le 2$.




Solve and graph. x < 4 and x > 1

(Black plate)

Solve and graph. $x \le -2$ and x < 7

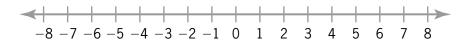


To solve the conjunction inequality -2 < x + 6 < 10, isolate the variable

The conjunction 10 > 5 > 1 can be written as ______ by reading from right to left.

Solve and graph. $2x - 4 \ge 4$ and -3x > 18

© 2003 BestQuest


Module 5 Lesson 5

136

Guided Notes

Solve and graph. $0 \le x + 2 \le 8$

(Black plate)

(Black plate)

410 4/7 2200