						DI
NAME				DA	ATE	- /-
Madula 5	Solving Linear Incaus	litics of				
wodule 5	One Variable	lities of			gui	ded
Lesson 3	Solving Two-Step Line	ar Inequali	ties		no	tes
Lesson	Objectives					
Solve tw	vo-step linear inequalities us	ing addition a	and subtracti	ion.		C.
Solve tw	o-step linear inequalities us	ing multiplica	ition and divi	sion.		
_		_				
The inequality	x + 2 < 14 contains a	multiplicat	ion and an	addition	n.	
Undo	tirst.	2		oincle +	+2 and	
then draw a a	here $x < 3$, and an arrow to the	.1		circle at	. 5, 0110	
			<u> </u>			
Solve and	1 graph: 4x - 3 > 5					
<			2 1 5	6	\rightarrow	
	0 0 -4 -0 -2 -1	0 1 2	5 4 0	U		
2 Solve and	$1 \text{ graph: } \frac{1}{3}x + 7 \ge 5$					
<					\rightarrow	
	-b -b -4 -3 -2 -1	U I 2	3 4 5	Ь		
3 Solve and	d graph: $-x + 4 \le 3$					
					\rightarrow	
	-6 -5 -4 -3 -2 -1	0 1 2	3 4 5	6		
4 Solve an	d graph: -6x - 12 < -24					
					→	
I	-6 -5 -4 -3 -2 -1	0 1 2	3 4 5	6		
Quest						
Best						
003 1						
© 2003						

 $-\phi$

 \rightarrow

Œ

DIGITAL