NAME

Module 3 Solving Linear Equations of One Variable

Lesson 6 Rewriting Formulas

DATE

Lesson Objectives

- Use formulas to find the value of one of the variables in the formula.
- Solve formulas for a given variable in the formula.
- Use formulas to solve real-world applications.

A formula is an \qquad that states a \qquad
about related quantities. The related quantities are represented by the
\qquad _.

We use a formula to find the value of one of the \qquad in the formula. Finding the value of a variable in a formula sometimes requires you to evaluate an \qquad . If length $=3 \mathrm{ft}$
and width $=2 \mathrm{ft}$, then $A=l w=(3)(2)=$ \qquad square feet.

Sometimes we need to solve an \qquad To find the width of a rectangle whose length is 6 feet and whose area is 12 square feet, substitute
\qquad for A and \qquad for l in the formula
$A=l w$. Then solve the equation
$A=l w$
\qquad
\qquad w
\qquad $=$ \qquad
The width of the rectangle is \qquad -.

To solve the formula $A=l w$ for width, use the rules of algebra. Undo the multiplication by dividing both sides of the equation by l.
$A=l w$
\qquad
\qquad
\qquad $=$ \qquad
For a rectangle, width $=\frac{\text { area }}{\text { length }}$.
(1) Find the width of a rectangle that has an area of 24 square inches and a length of 8 inches.
$w=\frac{A}{l}$
$w=$ \qquad
$w=$
The width of the rectangle is \qquad .

Another formula that can be rewritten and then used to find the width of a rectangle is $P=$ \qquad To rewrite this formula, get \qquad by
itself on one side of the equation.
$P=2 l+2 w$
\qquad $=$ \qquad First, subtract $2 l$ from both sides of the equation.
\qquad $=$ \qquad Then, divide both sides of the equation by 2 .

For a rectangle, width $=$ \qquad

Find the width of a rectangle that has a perimeter of 12 feet and a length of 4 feet.
$w=\frac{P-21}{2}$
$w=$ \qquad
$w=$ \qquad
$w=$ \qquad
$w=$ \qquad
The width of the rectangle is \qquad -.

Temperature is measured in the United States by degrees Fahrenheit and in
Canada by degrees \qquad .

The formula for converting Celsius to Fahrenheit is $F=$ \qquad -.

Convert $30^{\circ} \mathrm{C}$ to Fahrenheit:
$F=\frac{9}{5} C+32$
$F=\frac{9}{5}(\square)+32$
$F=$ \qquad $+32$
$F=$ \qquad
$30^{\circ} \mathrm{C}=$ \qquad
Solve the formula $F=\frac{9}{5} C+32$ for C.

$$
F=\frac{9}{5} C+32
$$

\qquad $=$ \qquad Subtract 32 from both sides.
\qquad
\qquad Multiply each side of the equation by $\frac{5}{9}$, $\frac{5}{9}(F-32)=C$ which is the reciprocal of $\frac{9}{5}$.
(3) Solve $d=r t$ for r.
\qquad
\qquad
$-\quad=r$
(4) Solve $V=\frac{1}{3} \pi r^{2} h$ for h.
$=3 \cdot \frac{1}{3} \pi r^{2} h$

$$
\begin{aligned}
& 3 V= \\
& \frac{3 V}{\pi r^{2}}=\square \\
&
\end{aligned}
$$

