NAME

DATE

Module 3 Solving Linear Equations of One Variable

Lesson 5 Solving Multi-Step Linear Equations

Lesson Objectives

- Solve equations involving more than one step.
- Solve multi-step equations involving fractions.
- Solve multi-step equations using the Distributive Property.
- Solve equations that are identities.
- Solve equations that have no solution.

A multi-step equation is an equation requiring more than one
\qquad to solve it.
Terms with variables are like terms if they have the same
\qquad to the same \qquad
Solve: $\quad 2 x+3 x=10$
\qquad $=$ \qquad

$$
\begin{aligned}
\frac{5 x}{5} & =\frac{10}{5} \\
x & =
\end{aligned}
$$

To check this solution, replace each x with \qquad and see if the resulting statement is true.

Check:

$$
\begin{aligned}
2 x+3 x & =10 \\
2(\ldots)+3(\ldots) & \stackrel{?}{=} 10 \\
-\ldots & \stackrel{?}{=} 10 \\
10 & =10
\end{aligned}
$$

To solve an equation with variables on both sides you get all the terms
involving \qquad on one side of the equation and all the
\square

Solve:

The solution is \qquad _.

Solve: $\quad 9 x+5-x=4 x+3$
Check: $\quad 9 x+5-x=4 x+3$
\qquad +5 - \qquad $\stackrel{?}{=} 4$ \qquad $+3$
\qquad $+5=4 x+3$

9 $+$ $\stackrel{?}{=}$ \qquad $+3$
\qquad $+5+$ \qquad

$$
4 x=
$$

$$
1=1 \checkmark
$$

$x=$ \qquad The solution is \qquad -.

Solve: $y+y+1+y+2=3 y+3$

$$
\begin{aligned}
& =3 y+3 \\
& =3
\end{aligned}
$$

The equation above is an \qquad because it is true for
\qquad value of the variable. The solution set is
\qquad
Solve: $\quad x-4+x+1=2 x+7$

$$
\begin{aligned}
& =2 x+7 \\
& =7
\end{aligned}
$$

The solution set is \qquad -.

$$
\text { (1. Solve: } \begin{aligned}
4 B+2 & =37-B \\
- & =37 \\
5 B & = \\
- & =7
\end{aligned}
$$

The solution is \qquad
© 2003 BestQuest

Solve:

$$
\begin{aligned}
z+7+3 z & =2 z+5+2 z+2 \\
& =4 z+7 \\
7 & =
\end{aligned}
$$

This equation is an \qquad
The solution set is \{ \qquad \}.

Example: $\quad 4(3 m-2)+1=17$
\qquad

$$
12 m-\square=17
$$

$$
12 m=
$$

\qquad
\qquad
\qquad
The solution is \qquad .

Example:

$$
\begin{aligned}
\frac{1}{2} j-6 & =-20-\frac{2}{3} j \\
-\left(\frac{1}{2} j-6\right) & =-\left(-20-\frac{2}{3} j\right) \\
& =-120-4 j \\
-36 & =-120 \\
7 j & = \\
j & =
\end{aligned}
$$

The solution is \qquad
To eliminate fractions in an equation, multiply both sides by the

(5) Solve:

$\frac{1}{6} w=2-\frac{1}{9} w$ $\cdot\left(\frac{1}{6} w\right)=$ \qquad $\cdot\left(2-\frac{1}{9} w\right)$
\qquad $=$ \qquad
\qquad $=$ \qquad
\qquad

$$
=\frac{36}{5}=7 \frac{1}{5}
$$

The solution is \qquad _.

When solving a multi-step equation:

- Eliminate parentheses by using the \qquad
- Simplify each side of the equation as needed, by
- Get all the \qquad terms on one side of the equation and all the \qquad terms on the other side.
- Simplify each side of the equation as needed, by
- Divide both sides by the variable's coefficient.

An equation is a mathematical statement that has the same value on either side of the \qquad Every step in solving an equation will have an \qquad in it.

