
DIGITAL

NAME		DATE		
Module 3	Solving Linear Equat of One Variable	ions		uided
Lesson 4	Solving Two-Step Lin	ear Equations	19	juided notes
Lesson	Objectives			Accesso
	wo-step equations. solutions.			
Determ	ine if a number is a solutior	n for a two-step equation	n.	
• Provide	e reasons for each step in s	olving a two-step equal	ion.	
- 1				
-	ations, you must use	ope	erations. You can	
	as working backwards.			
If you pick a	number, multiply by 5, o	and add 3, the result	is 23. To find	
the original i	number you should	3 fro	om 23 to get	
	Then	by 5. The	e original number	
was				
Multiplying	a number by 5 and then	adding 3 to get a res	ult of 23 can be	
written as th	e equation			
To evaluate t	he expression $5x + 3$, we	e would	first,	
and then	When	ı we solve the equati	on by working	
backwards, v	ve undo addition first by		, and then undo	
	n by dividing.			
Solve:		Check:	5x + 3 = 23	
	6 – = 23 –		$() + 3 \stackrel{?}{=} 23$	
07 1 0	5x = 20		$ + 3 \stackrel{?}{=} 23 $	
	x =		$23 = 23 \checkmark$	
	A	The solution i		
		The solution I	o	

Æ

DIGITAL

The solution is _____.

Is 2 a solution of the equation -7C - 10 = -4? Check: -7C - 10 = -4 $-7(___) - 10 \stackrel{?}{=} -4$ $___-10 \stackrel{?}{=} -4$ $-24 \neq -4$

Circle the correct answer: 2 is/is not a solution.

2 Explain how to solve the equation
$$\frac{p}{5} + 9 = 13$$

3 Solve:
$$-4J - 1 = 11$$

It is not always necessary to show all the "steps", but be sure you can explain all your steps.

Each step has a				
Statements	Reasons			
Example: $5x + 3 = 23$	Given			
5x = 23				
x = 4				
© 2003 BestQuest				
Module 3 Lesson 4		26	Guide	ed Notes

DIGITAL

Explain the steps used to solve the equation $\frac{A}{-3} + 12 = 4$.

Statements	Reasons
$\frac{A}{-3} + 12 = 4$	Given
$\frac{A}{-3} = -8$	
A = 24	

© 2003 BestQuest

Module 3 Lesson 4

Guided Notes

Œ

DIGITAL