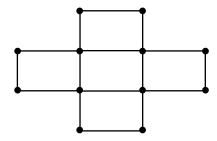
NAME

Module 20 Solving Problems Using Probability,

Statistics, and Discrete Math

Lesson 4 Solving Discrete Mathematics Problems

Lesson Objectives


- Determine if a graph is traversable.
- Find a traversable path.
- Determine if two graphs are equivalent.

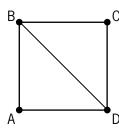
A graph is a	of vertices and edges. Each point is a	
,	and each segment or arc connecting the vertices is	called
an	An edge can be straight or curved.	
The degree of a vert	ex is found by counting the number of edges	
t	o it.	
A graph is	if it has a path in which each edge can b	e
traced	The traversable path is the shortest way to go	o to
each of the vertices	of the graph.	
A graph is traversal	ole if, and only if, either of the following is true. Eac	ch
vertex has an	degree, or exactly v	ertices
have an odd degree		
When there are exa	actly two vertices with odd degree, those vertices are	
always the	of	the
traversable path.		
When the degree of	every vertex is, any point can be	e a
startina or endina r	point of a traversable path	

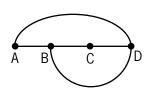
© 2003 BestQuest

Module 20 Lesson 4 97 Guided Notes

Use the following graph for Questions 1 and 2. The graph shown represents a neighborhood. The edges represent the streets, and the vertices represent the intersections.

Find the degree of each vertex.




2 A student in the neighborhood is selling cookies from door to door. Is there a traversable path that would enable her to walk around the entire neighborhood without walking any part of a street more than once?

In equivalent graphs, the edges form the ______ of vertices.

Determine if the graphs are equivalent graphs.

© 2003 BestQuest