NAME

Module 20 Solving Problems Using Probability, Statistics, and Discrete Math
 Lesson 2 Solving Basic Probability Problems

DATE

guided
 notes

Lesson Objectives

- Find experimental probability.
- Find theoretical probability.
- Find the probability of the complement of an event.

The probability of an event is the \qquad that the event will occur.

The probability of an event can be expressed as a real number from zero to one, inclusive. An event with a probability of zero is \qquad An
event with a probability of one is \qquad to occur.

The closer the probability of an event is to one, the \qquad it is
that the event will happen.
Experimental Probability $=$ number of \qquad trials \div
\qquad number of trials.

Theoretical Probability $=$ number of \qquad outcomes \div
\qquad number of outcomes.

The Law of Large Numbers states as the number of trials increases, the experimental probability gets \qquad to the theoretical
probability.
Use the table on the right to answer Questions 1 and 2.
A fair die was rolled 20 times. The number of times each number landed face up is shown.
(1) Find the experimental probability of rolling a four.

Find the theoretical probability of rolling a four.

Number	Number of times face up
1	4
2	2
3	3
4	5
5	2
6	4

Complementary events are two mutually exclusive events; one of which must happen.

Mutually exclusive events are events that cannot happen

The formula $\mathrm{P}($ not A$)=$ \qquad is used to find the probability of the complement of an event.
(3) The probability of winning a carnival game is $\frac{3}{25}$. Find the probability of NOT winning the game.
© 2003 BestQuest

