NAME DATE

Solving Radical Equations Module 18 Lesson 1 Solving One-Step Radical Equations

Lesson Objectives

- Solve one-step radical equations.
- Determine whether a solution is extraneous by checking.

$$(\sqrt{x})^2 =$$

$$\sqrt{x^2} =$$

$$(\sqrt[3]{x})^3 =$$

A radical equation is an equation that has a _____ in the

radicand.

To solve a radical equation, first rewrite the equation without

_____. Then, solve the resulting equation.

By squaring both sides of an equation, ______ solutions may

be generated.

An extraneous solution is a solution that does not satisfy the

_____ equation. Therefore, an extraneous solution is _____ a solution of the equation.

Solve and check: $\sqrt{x} = 12$.

Solve and check: $\sqrt{x} = 7$.

The radical sign indicates the nonnegative square root.

Solve and check: $\sqrt{x} = -6$.

4 Solve and check: $-\sqrt{x} = -11$.

Solve and check: $\sqrt[4]{x} = 5$.