NAME

Module 14 Graphing Quadratic Relations
Lesson 3 Solving Problems Using Quadratic Graphs

$\overline{\text { DATE }}$

Lesson Objectives

- Use graphs of quadratic equations to solve problems.
- Use quadratic equations to solve problems.

The equation $h=-16 t^{2}+32 t+6$ gave the height h of Newt's egg at any
time t, assuming no air resistance. h represents height in feet and t represents time in seconds.

- In this equation, the constant term six represents the initial height, in
feet, of Newt's egg.
- Thirty-two represents the initial velocity, in feet per second, of

Newt's egg.

- The equation representing Ferd's egg toss and the equation representing

Newt's egg toss both have -16 as the coefficient of t^{2}.
(1) The equation to model Ferd's egg toss is $h=-16 t^{2}+16 t+5$. Use the graph of that equation to estimate the time it takes to reach the maximum height.
(2) The equation to model Ferd's egg toss is $h=-16 t^{2}+16 t+5$. Use the graph of that equation to estimate the maximum height reached by the egg.
(3) Use the graph of the equation $h=-16 t^{2}+16 t+5$ to approximate the time Ferd's egg traveled before it hit the ground.
(4. The path of a football thrown by Bret is given by the equation $y=-0.03 x^{2}+0.9 x+6$, where x and y are measured in yards. What was the ball's horizontal distance from Bret when it reached its maximum height?

